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ABSTRACT
The paper investigates properties of the conditional indepen-
dence relation between pieces of information. This relation
is also known in the database theory as embedded multi-
valued dependency. In 1980, Parker and Parsaye-Ghomi
established that the properties of this relation can not be
described by a finite system of inference rules. In 1995, Her-
rmann proved that the propositional theory of this relation
is undecidable. The main result of this paper is a complete
recursively enumerable axiomatization of this theory.

1. INTRODUCTION
In this paper, we study the properties of interdependencies

between pieces of information. We call these pieces secrets
to emphasize the fact that they might be unknown to some
parties. For example, if secret a is the area of a triangle and
secret p is the perimeter of the same triangle, then there is
an interdependence between these secrets in the sense that
not every value of secret a is compatible with every value
of secret p. If there is no interdependence between two se-
crets, then we say that the two secrets are independent. In
other words, secrets a and b are independent if each possi-
ble value of secret a is compatible with each possible value
of secret b. We denote this relation between two secrets
by a ‖ b. This relation was introduced by Sutherland [18]
and is sometimes referred to as nondeducibility. Halpern
and O’Neill [6] proposed a closely related notion called f -
secrecy. Donders, More, and Naumov described properties
of a multi-argument variation a1 ‖ a2 ‖ · · · ‖ an of the same
relation under the assumption that the secrets are generated
over an undirected graph [12], a directed acyclic graph [2],
or a hypergraph [11] with a fixed topology.

Independence relation can be generalized to relate two sets
of secrets. If A and B are two such sets, then A ‖ B means
that any consistent combination of values of secrets in set A
is compatible with any consistent combination of values of
secrets in set B. Note that “consistent combination” is an
important condition here since some interdependence may
exist between secrets in set A even while the entire set of
secrets A is independent from the secrets in set B. A sound
and complete axiomatization of this relation between sets of
secrets was given by More and Naumov [10]:

1. Empty Set: ∅ ‖ A,

2. Monotonicity: A,B ‖ C → A ‖ C,

3. Symmetry: A ‖ B → B ‖ A,

4. Exchange: A,B ‖ C → (A ‖ B → A ‖ B,C),

where here and everywhere below by A,B we mean the
union of the sets A and B. The same axioms were shown by
Geiger, Paz, and Pearl [3] to provide a complete axiomati-
zation of the independence relation between sets of random
variables in probability theory. More recently, the same sys-
tem was shown to be sound an complete with respect to
concurrency [14] and game [15] semantics.

Suppose now that a, b, c, and d are four secrets with inte-
ger values such that a+b+c+d ≡ 0 (mod 2). Note that a ‖ b
is true since every possible value of a is consistent with any
possible value of b. At the same time, if values of c and d are
fixed, then not every possible value of secret a is compatible
with every possible value of secret b. We will say that secrets
a and b are not independent conditionally on c, d and denote
this by ¬(a ‖c,d b). On the other hand, if only value of c is
fixed, then any value of a is still consistent with any value
of b. We write this as a ‖c b. In general, conditional inde-
pendence relation A ‖C B can be defined between any three
disjoint sets of secrets. This relation, which is also known
in the database theory as embedded multivalued dependency,
has many non-trivial properties. For example, later we will
show soundness of the following principles:

A ‖C B ∧A ‖B,C D → A ‖C B,D,

A,B ‖C D → A ‖B,C D,

B ‖A C∧ E ‖B D∧ D ‖C F ∧ E ‖D F ∧ A ‖E F → E ‖A F.

Parker and Parsaye-Ghomi [16] have shown that this rela-
tion can not be described by a finite system of inference
rules. Herrmann [7, 8] proved the undecidability of the
propositional theory of this relation. Lang, Liberatore, and
Marquis [9] studied complexity of conditional independence
between sets of propositional variables. Studený [17] has
shown that the related conditional independence in proba-
bility theory has no complete finite characterization. More
recently, Grädel and Väänänen discussed (incomplete) logi-
cal systems describing properties of the conditional indepen-
dence in propositional and first order languages [4] and sug-
gested model checking game semantics for these systems [5].

The main result of this paper is a complete infinite recur-
sively enumerable axiomatization of the propositional theory
of the relation A ‖C B. This work builds on the techniques
from our previous TARK paper [13], where we gave a com-
plete axiomatization of a different ternary knowledge rela-
tion. The “diagram” notion used in the current paper is a
generalization of the “diamond” notations from the previous
paper.



2. SYNTAX AND SEMANTICS
We assume a fixed alphabet of “secret” variables: a, b, . . . .

Definition 1. By the set of formulas Φ we mean the
minimal set of formulas such that

1. ⊥ ∈ Φ,

2. A ‖C B ∈ Φ for each pairwise disjoint sets of secret
variables A, B, and C,

3. ϕ1 → ϕ2 ∈ Φ if ϕ1, ϕ2 ∈ Φ.

As usual, all other boolean connectives are assumed to be
defined through the implication and the constant false.

Definition 2. A protocol is a pair P = 〈V,R〉, where,

1. for any secret variable a, set V (a) is an arbitrary set
of “values” of secret a,

2. R is a set of functions r on secret variables such that
r(a) ∈ V (a) for any secret variable a. Elements of R
will be called “runs” of the protocol.

For any set of secret variables A and any runs r1 and r2,
we write r1 ≡A r2 if r1(a) = r2(a) for any a ∈ A. The next
definition is the core definition of this paper. Item 3 below
formally defines conditional independence relation between
sets of secrets.

Definition 3. For any protocol P = 〈V,R〉 and any for-
mula ϕ ∈ Φ, we define the binary relation P � ϕ as follows:

1. P 2 ⊥,

2. P � A ‖C B if and only if, for any r1, r2 ∈ R, such that
r1 ≡C r2, there is r ∈ R such that r1 ≡A,C r ≡B,C r2.

3. P � ϕ→ ψ if and only if P 2 ϕ or P � ψ.

3. GRAPH NOTATIONS
In this paper we deal with graphs that might have di-

rected as well as undirected edges. An example G of such
graph is depicted in Figure 1. We use word “path” for any
sequences of adjacent vertices without taking into account
the directions of edges. For example, sequence of vertices
v1, v2, v3 is a path in graph G. The graphs that we consider
are “labeled”. By that we mean that each edge of the graph
is labeled with a set of secret variables. If vertices u and w
of the graph are connected by a path such that each edge
of the path is labeled with a set containing label x, then we
write u ∼x w. For example, v1 ∼a v3 in graph G. We allow
paths that consist of just a single vertex. This assumption
implies that relation u ∼x w is an equivalence relation on
graphs for any fixed label x.

v1 v3c

v2

a,b a,d

Figure 1: Graph G

For any set of labels X, we write u ∼X w if u ∼x w for
each x ∈ X. For example, v1 ∼a,c v3 in graph G. Note that

a-path and c-path from v1 to v3 are not the same. Relation
u ∼X w is also an equivalence relation on vertices for any
fixed set of secret variables X. Sometimes we draw only a
fragment of a graph. To show that vertices u and w are in
relation u ∼X w on the whole graph, we connect vertices u
and w in our partial drawing by a double line labeled with
set X. For example,

v1 v3a,c

is a partial drawing of the graph G from Figure 1.

4. DIAGRAMS
The description of the axiomatic system for conditional in-

dependence proposed in this paper is using the notion of a di-
agram. Informal drawing similar to our diagrams have been
used before to visualize arguments about specific properties
of conditional independence. See, for example, illustrations
in Parker and Parsaye-Ghomi [16]. In this work, however,
we give such drawings a precise mathematical definition and
show, through the proof of completeness theorem, that all
properties of conditional independence can be observed by
analyzing the diagrams.

A diagram is a labeled graph with a special structure.
For each diagram ∆ there is a set of formulas [∆] that, in-
formally, is used to “construct” the diagram. Formally, the
diagrams and the corresponding sets of formulas are defined
below.

Definition 4. For any set of secret variables Q, the set
of diagram Diag(Q) is the minimal set such that

1. it contains the “basic” diagram ∆0 consisting of two
vertices, called v+ and v−, and an undirected edge be-
tween v+ and v− labeled with Q:

v+ v�Q

By definition, set [∆0] is empty.

2. For any pair-wise disjoint sets A, B, and C, and any
two vertices u and v of a diagram ∆ ∈ Diag(Q), such
that u ∼C v, there is a diagram ∆′ ∈ Diag(Q):

u vC

vnew

A,C B,C

Δ

Δ'

…       ...       …

such that

(a) Diagram ∆′, in addition to all vertices of the di-
agram ∆, contains a new vertex vnew,

(b) Diagram ∆′, in addition to all edges of the dia-
gram ∆, contains two new directed edges (u, vnew)
and (v, vnew) labeled by sets A∪C and B ∪C re-
spectively.



(c) [∆′] = [∆] ∪ {A ‖C B}.

If diagrams ∆ and ∆′ are related as described above, then
we say that diagram ∆′ is an extension of the diagram ∆.
The same diagram ∆ has multiple extensions. The unique
vertices v+ and v− from which construction of a diagram ∆
was started will be referred to as v+

∆ and v−∆. Note that if
∆ ∈ Diag(Q), then v+

∆ ∼Q v−∆.

v+ v�C

v1

A,C B,C

Figure 2: Diagram ∆1 ∈ Diag(C)

For example, diagram ∆1 in Figure 2 is obtained from the
basic diagram through a single extension using sets A, B,
and C. Thus, [∆1] = {A ‖C B}.

v+ v�A

v1

B,A C,A

v3

D,C

F,C

v2

E,B

D,B

v4

E,D F,D

Figure 3: Diagram ∆2 ∈ Diag(A)

On the other hand, diagram ∆2 in Figure 3 can be con-
structed from the basic diagram by first adding vertex v1,
next v2, next v3, and finally v4. Alternatively, the order
can be v1, v3, v2, and v4. In either case, [∆2] = {(B ‖A
C), (E ‖B D), (D ‖C F ), (E ‖D F )}. Note that vertex v4

was added in spite of the lack of a direct edge from vertex
v2 to vertex v3. For the diagram to extand to v4 we only
require v2 ∼D v3.

Definition 5. Let

t = (A1, A2, A3;B1, B2, B3;C1, C2, C3;D)

be a tuple of disjoint sets of labels. We say that diagram
∆ ∈ Diag(C1∪C2∪C3) renders tuple t if diagram ∆ contain
vertices w1 and w2 such that

v+
�

v��

w1 w2

A 1
,A
3,
C
1,
C
3

B 2
,B
3,
C
2,
C
3

B 1
,B 3
,C 1
,C 3

A
2 ,A
3 ,C
2 ,C
3

D

C1,C2,C3

or, in other words, w1 ∼A1,A3,C1,C3 v+
∆; w1 ∼B1,B3,C1,C3

v−∆; w2 ∼A2,A3,C2,C3 v
+
∆; w2 ∼B2,B3,C2,C3 v

−
∆; w1 ∼D w2.

For example, Diagram ∆1, depicted in Figure 2, renders
(with w1 = v1 and w2 = v+) tuple

(A,∅,∅;∅, D,B;∅,∅, C;∅)

for an arbitrary set of secrets D, because

v+ v�

v1 v�

A,C

B,
C
,D

B,C C

∅

C

.

Here, of course, we use the fact that v− ∼B,C,D v− for each
set of secrets D.

As another example, Diagram ∆2, depicted in Figure 3,
renders (with w1 = v+ and w2 = v4) tuple

(∅,∅, E;∅, F,∅;A,∅,∅;∅),

because

v+ v�

v+ v4

E

?

A

FA,E

A

.

5. AXIOMS
In this section we introduce a logical system describing

properties of conditional independence. The axioms of the
system are:

1. Symmetry: A ‖C B → B ‖C A,

2. Monotonicity: A ‖C B,D → A ‖C B,

3. Diagram:

∧[∆] → (A1, B1, C1 ‖A3,B3,C3,D A2, B2, C2 →
A1, A2, A3 ‖C1,C2,C3 B1, B2, B3),

if diagram ∆ renders tuple

(A1, A2, A3;B1, B2, B3;C1, C2, C3;D)

and ∧[∆] stands for conjunction of all formulas in [∆].

We write ` ϕ if formula ϕ ∈ Φ is provable from the above
axioms and propositional tautologies in the language Φ using
Modes Ponens inference rule. We write X ` ϕ if formula ϕ
is provable in our logical system using an additional set of
axioms X.

Theorem 1. The set of axioms of this logical system is
recursively enumerable.

Proof. The statement of the theorem follows from re-
cursive enumerability of diagrams, recursive enumerability
of tuples, and decidability of “diagram renders tuple” rela-
tion.



6. EXAMPLES
In this section we give several examples of formal proofs

in our logical system. The soundness of the axioms will
be shown in Section 7. We start with the three non-trivial
properties of the conditional independence mentioned in the
introduction.

Proposition 1. ` A ‖C B ∧A ‖B,C D → A ‖C B,D.

Proof. Consider diagram ∆1 depicted in Figure 2. As
we have shown in Section 4, this diagram renders tuple
(A,∅,∅;∅, D,B;∅,∅, C;∅). Thus, by the Diagram axiom,

` [∆1]→ (A ‖B,C D → A ‖C B,D).

Recall from Section 4 that [∆1] = {A ‖C B}. Therefore,
` A ‖C B → (A ‖B,C D → A ‖C B,D).

Proposition 2. ` A,B ‖C D → A ‖B,C D.

Proof. Consider basic diagram ∆3:

v+ v�B,C

This diagram renders (with w1 = v+ and w2 = v−) tuple
(A,∅,∅;∅, D,∅;B,∅, C;∅) because

v+ v�B,C

v+ v�

A,B,C C,D

∅

B,C C

.

Hence, by the Diagram axiom,

` ∧[∆3]→ (A,B ‖C D → A ‖B,C D).

Recall that ∆3 is a basic diagram. Thus, by Definition 4,
set [∆3] is empty. Therefore, ` A,B ‖C D → A ‖B,C D.

Proposition 3.

` B ‖A C∧E ‖B D∧D ‖C F∧E ‖D F∧A ‖E F → E ‖A F.

Proof. Consider diagram ∆2 depicted in Figure 3. As
we have shown in Section 4, this diagram renders tuple

(∅,∅, E;∅, F,∅;A,∅,∅;∅).

Thus, by the Diagram axiom,

` [∆2]→ (A ‖E F → E ‖A F ).

Recall from Section 4 that

[∆2] = {(B ‖A C), (E ‖B D), (D ‖C F ), (E ‖D F )}.

Therefore,

` B ‖A C∧E ‖B D∧D ‖C F∧E ‖D F∧A ‖E F → E ‖A F.

As our final example, we prove the Exchange axiom men-
tioned in the introduction. Although it is a property of
non-conditional independence, it can be rephrased in the
language of the conditional independence.

Proposition 4.

` A,B ‖∅ C → (A ‖∅ B → A ‖∅ B,C).

Proof. Suppose that A,B ‖∅ C. Thus, A ‖B C by
Proposition 2. Therefore, by Proposition 1 and due to the
assumption A ‖∅ B, we can conclude that A ‖∅ B,C.

7. SOUNDNESS
We prove soundness of each axiom as a separate lemma.

Lemma 1 (symmetry). For any protocol P = (V,R),
if P � A ‖C B, then P � B ‖C A.

Proof. Assume that r1 ≡C r2 for some runs r1, r2 ∈ R.
Thus, r2 ≡C r1. Hence, by the assumption of the lemma,
there is r ∈ R such that r2 ≡A,C r ≡B,C r1. Therefore,
r1 ≡B,C r ≡A,C r2.

Lemma 2 (monotonicity). For any P = (V,R), if
P � A ‖C B,D, then P � A ‖C B.

Proof. Assume that r1 ≡C r2 for some runs r1, r2 ∈ R.
Hence, by the assumption of the lemma, there is r ∈ R such
that r1 ≡A,C r ≡B,D,C r2. Therefore, r1 ≡A,C r ≡B,C

r2.

Next, we establish a technical lemma that is used in the
proof of soundness of the Diagram axiom.

Lemma 3. For any diagram ∆ ∈ Diag(Q) and any pro-
tocol P = (V,R) such that P � δ for each δ ∈ [∆], if
r+, r− ∈ R and r+ ≡Q r−, then there is a function ρ that
maps vertices of the diagram ∆ into runs in R that satisfies
the following conditions:

1. ρ(v+
∆) = r+ and ρ(v−∆) = r−,

2. if v1 ∼S v2, then ρ(v1) ≡S ρ(v2).

Proof. Induction on the number of vertices in diagram
∆. If ∆ is a basic diagram, then define ρ to be such that
ρ(v+

∆) = r+ and ρ(v−∆) = r−. Condition 2 is satisfied because
of the assumption r+ ≡Q r−.

Suppose now that diagram ∆′ is obtained from diagram
∆ by adding a new vertex vnew, connected to vertices u and
v by edges labeled with sets A ∪ C and B ∪ C respectively,
such that u ∼C v. By the induction hypothesis, there is a
function ρ on the vertices of the diagram ∆ that satisfies
conditions 1. and 2. of this lemma. In particular, ρ(u) ≡C

ρ(v). We will show how function ρ could be extended to the
vertex vnew preserving conditions 1. and 2.

Note that A ‖C B ∈ [∆′], by Definition 4. Hence, by the
assumption of this lemma, P � A ‖C B. Therefore, there
is a run r ∈ R such that ρ(u) ≡A,C r ≡B,C ρ(v). Define
ρ(vnew) = r.

To finish the proof of the lemma, we need to show that if
vnew ∼S w, where w 6= vnew is a vertex in the diagram ∆′,
then ρ(vnew) ≡S ρ(w). Note that vertex w is also a vertex
in the diagram ∆, because w 6= vnew. Thus, Set S could
be partitioned into sets S1 and S2 such that: S1 ⊂ A ∪ C,
S2 ⊂ B∪C, u ∼S1 w and v ∼S2 w. Hence, by the induction
hypothesis, ρ(u) ≡S1 ρ(w) and ρ(v) ≡S2 ρ(w). Thus,

ρ(vnew) = r ≡S1 ρ(u) ≡S1 ρ(w),

ρ(vnew) = r ≡S2 ρ(v) ≡S2 ρ(w).

Therefore, ρ(vnew) ≡S ρ(w).

Lemma 4 (diagram). For any protocol P = (V,R), if

1. diagram ∆ renders tuple

(A1, A2, A3;B1, B2, B3;C1, C2, C3;D),



2. P � δ for each δ ∈ [∆],

3. P � A1, B1, C1 ‖A3,B3,C3,D A2, B2, C2

then P � A1, A2, A3 ‖C1,C2,C3 B1, B2, B3.

Proof. Let r+, r− ∈ R be such that r+ ≡C1,C2,C3 r−.
We will prove the existence of a run r ∈ R such that

r+ ≡A1,A2,A3,C1,C2,C3 r,

r− ≡B1,B2,B3,C1,C2,C3 r.

By Lemma 3, there is a function ρ that maps vertices
of the diagram into runs of the protocol P that satisfies
conditions 1. and 2. of Lemma 3.

By Definition 5, there are vertices w1 and w2 in the di-
agram ∆ that satisfy conditions 1.-5. of that definition.
In particular, w1 ∼A3,C3 v+

∆ and w2 ∼A3,C3 v+
∆. Thus,

w1 ∼A3,C3 w2. Similarly, w1 ∼B3,C3 w2. By condition 5.
of Definition 5, w1 ∼D w2. Therefore, w1 ∼A3,B3,C3,D w2.
Thus, by the assumption 3. of this lemma, there is a run
r ∈ R such that

ρ(w1) ≡A1,B1,C1,A3,B3,C3,D r (1)

ρ(w2) ≡A2,B2,C2,A3,B3,C3,D r (2)

By Definition 5,

w1 ∼A1,A3,C1,C3 v
+
∆

w2 ∼A2,A3,C2,C3 v
+
∆.

Hence, by condition 2. of Lemma 3,

ρ(w1) ≡A1,A3,C1,C3 r
+

ρ(w2) ≡A2,A3,C2,C3 r
+.

Finally, taking into account equations (1) and (2),

r+ ≡A1,A2,A3,C1,C2,C3 r.

Similarly, r− ≡B1,B2,B3,C1,C2,C3 r.

8. COMPLETENESS
In the rest of the paper we establish completeness of our

logical system.

Theorem 2 (completeness). For any ϕ ∈ Φ, if 0 ϕ,
then there is a protocol P such that P 2 ϕ.

Suppose that 0 ϕ. Let X be any maximal consistent subset
of Φ containing formula ¬ϕ.

8.1 Chains of Diagrams
The chains of diagrams is a technical construction that we

use to prove of the completeness theorem.

Definition 6. A Q-chain is an infinite sequence of di-
agrams ∆0,∆1, . . . ,∆n, . . . from Diag(Q) such that ∆0 is
the basic diagram and diagram ∆i+1 is an extension of the
diagram ∆i for each i ≥ 0.

Lemma 5. For any Q-chain ∆0,∆1, . . . ,∆n, . . . , any la-
bel p, any n, and any N ≥ n, if x and y are vertices on a
diagram ∆n and x ∼p y on diagram ∆N , then x ∼p y on
diagram ∆n.

Proof. Suppose that there is n ≤ k < N such that x ∼p

y on diagram ∆k+1, but not on diagram ∆k. By Definition 4,
diagram ∆k+1 is obtained from diagram ∆k by adding vertex
w connected to vertices u and v by edges labeled with sets
A ∪ C and B ∪ C, such that u ∼C v on diagram ∆k.

Since x ∼p y on diagram ∆k+1, but not on diagram ∆k,
there must be a path labeled by p between vertices x and
y on diagram ∆k+1 that goes through both added edges:
(u,w) and (w, v). Hence, p ∈ (A∪C)∩ (B ∪C). By Defini-
tion 1, sets A, B, and C are disjoint. Thus, p ∈ C. Recall,
however, that u ∼C v on diagram ∆k. Therefore, x ∼p y
on diagram ∆k, which is a contradiction with the choice of
k.

Definition 7. A Q-chain ∆0,∆1,∆2, . . . is called sound
if [∆n] ⊆ X for each n ≥ 0.

Definition 8. A Q-chain ∆0,∆1,∆2, . . . is complete if
for any A ‖C B ∈ X, for any n ≥ 0 and any two vertices
u, v of the diagram ∆n such that u ∼C v, there is N ≥ n and
a vertex w in the diagram ∆N such that relations u ∼A,C w
and w ∼B,C v hold in diagram ∆N .

Lemma 6. For any set of secrets Q, there is a Q-chain
which is complete and sound with respect to the set X.

Proof. The statement of the lemma follows from the
Definition 4 and the fact that set X is countable.

8.2 Chain Protocol
We now show how a chain of diagrams can be converted

into a protocol with certain desirable properties. Later, sev-
eral such protocols will be combined into one in order to
finish the proof of the completeness theorem.

Lemma 7. For each finite set of secrets Q there is a pro-
tocol P such that

1. protocol P has at least one run,

2. P � A ‖C B for each sets of secret variables A, B, and
C such that A ‖C B ∈ X,

3. P 2 P ‖Q R for each sets of secret variables P and R
such that P ‖Q R /∈ X.

Proof. By Lemma 6, there is Q-chain of diagrams

∆0,∆1,∆2, . . . ,

which is complete and sound with respect to the set X. Let
V0 ⊂ V1 ⊂ V2 ⊂ . . . be the sets of vertices of these diagrams.

For any label a and any two vertices u, v ∈
⋃

i Vi, we say
that vertices u and v are a-equivalent if there is k such that
u ∼a v in diagram ∆k. Let V al(a) be the set of equivalence
classes on

⋃
i Vi with respect to this equivalence relation.

For any v ∈
⋃

i Vi and any label a, define function rv(a)
to be equal to the a-equivalence class of v:

rv(a) = [v]a.

Let R = {rv | v ∈
⋃

i Vi}. This concludes the definition
of the protocol P = (V al,R). We will now show that this
protocol satisfies conditions 1., 2., and 3. of the lemma.

To prove the first condition, notice that set
⋃

i Vi is not
empty, because it contains vertices v+ and v− from the basic
diagram ∆0. Thus, set {rv | v ∈

⋃
i Vi} is also not empty.



To prove the second condition, consider any ru, rv ∈ R
such that ru ≡C rv. We will show that there is rw ∈ R such
that ru ≡A,C rw ≡B,C rv. Indeed, ru ≡C rv implies that
[u]c = [v]c for each c ∈ C. Thus, for each c ∈ C, vertices u
and v are c-equivalent. Hence, there must exists n ≥ 0 such
that u ∼C v in ∆n. By Definition 8, there is N ≥ n and a
vertex w in the diagram ∆N such that relations u ∼A,C w
and w ∼B,C v hold in diagram ∆N . Thus, [u]x = [w]x for
each x ∈ A∪C and [w]y = [v]y for each y ∈ B∪C. Therefore,
ru ≡A,C rw ≡B,C rv.

To prove the third condition, assume the opposite: P �
P ‖Q R. Consider vertices v+ and v− of the based diagram
∆0. By Definition 4, v+ ∼Q v− on diagram ∆0. Thus,
[v+]q = [v−]q for each q ∈ Q. Hence, rv+ ≡Q rv− . Then, by
the assumption P � P ‖Q R, there must be a run rw such
that rv+ ≡P,Q rw ≡R,Q rv− . Hence, [v+]t = [w]t for each
t ∈ P ∪Q and [w]t = [v−]t for each t ∈ R ∪Q. Thus,

v+ v�

w

P,Q R,
Q

Q

.

Let n be the smallest integer such that ∆n contains vertex
w. By Definition 4, there are vertices u and v in diagram
∆n such that

1. vertex w is only connected in diagram ∆n to u and v,

2. edge (u,w) is labeled with a set A,

3. edge (w, v) is labeled with set B,

4. u ∼A∩B v in diagram ∆n−1, and

5. A \B ‖A∩B B \A ∈ [∆n].

Since chain ∆0,∆1, . . . is sound with respect to set X, the
last condition above implies that

A \B ‖A∩B B \A ∈ X.

By Monotonicity axiom,

X ` A \B ‖A∩B P ∩ (B \A), R ∩ (B \A), Q ∩ (B \A).

By Symmetry axiom,

X ` P ∩ (B \A), R ∩ (B \A), Q ∩ (B \A) ‖A∩B A \B.

By Monotonicity axiom,

X ` P ∩ (B \A), R ∩ (B \A), Q ∩ (B \A) ‖A∩B
P ∩ (A \B), R ∩ (A \B), Q ∩ (A \B).

Again by Symmetry axiom,

X ` P ∩ (A \B), R ∩ (A \B), Q ∩ (A \B) ‖A∩B
P ∩ (B \A), R ∩ (B \A), Q ∩ (B \A).

In other words,

X ` P ∩ (A \B), R ∩ (A \B), Q ∩ (A \B)

‖P∩(A∩B),R∩(A∩B),Q∩(A∩B),(A∩B)\(P∪Q∪R)

P ∩ (B \A), R ∩ (B \A), Q ∩ (B \A).

We now apply the Diagram axiom (see Figure 4) with

v+ v�Q

v
u

w

A ∩ B

A \ B B \ A

P ∩ (A \ B)

P ∩ (A ∩ B)

P ∩ (A ∩ B)

P ∩ (B \ A)

Q ∩ (A \ B)

Q ∩ (A ∩ B) Q ∩ (A \ B)

Q ∩ (A ∩ B)

R ∩ (A \ B)

R ∩ (A ∩ B)

Q ∩ (A \ B)

Q ∩ (A ∩ B)

R ∩ (B \ A)

R ∩ (A ∩ B)

Q ∩ (A \ B)

Q ∩ (A ∩ B)

Figure 4: Diagram ∆n.

A1 = P ∩ (A \B) A2 = P ∩ (B \A)

B1 = R ∩ (A \B) B2 = R ∩ (B \A)

C1 = Q ∩ (A \B) C2 = Q ∩ (B \A)

A3 = P ∩ (A ∩B)

B3 = R ∩ (A ∩B)

C3 = Q ∩ (A ∩B)

D = (A ∩B) \ (P ∪Q ∪R)

to conclude that

X ` P ∩ (A \B), P ∩ (B \A), P ∩ (A ∩B)

‖Q∩(A\B),Q∩(B\A),Q∩(A∩B) (3)

R ∩ (A \B), R ∩ (B \A), R ∩ (A ∩B).

Recall that w ∼P∪Q v+ and w ∼R∪Q v−. At the same time,
vertex w is only connected in diagram ∆n to u and v, edge
(u,w) is labeled with a set A, and edge (w, v) is labeled
with set B. Hence, P ∪ Q ⊆ A ∪ B. Thus, statement (3)
implies that X ` P ‖Q R, which is a contradiction with the
assumption.

8.3 Protocol Composition
In this section we introduce a way to combine several dif-

ferent protocols over (S,G) into a single protocol.

Definition 9. For any protocols P1 = (V1, R1), . . . ,Pn =
(Vn, Rn), let P1 × · · · × Pn be a protocol (V,R) such that

1. V (a) = V1(a)× · · · × Vn(a), for each a ∈ S,

2. R is a set of all functions r(x) = 〈r1(x), . . . , rn(x)〉 for
all r1 ∈ R1, . . . , rn ∈ Rn.

Lemma 8. Let P1 = (V1, R1), . . . ,Pn = (Vn, Rn) be pro-
tocols such that set Rk is not empty for each k ≤ n. Then
P1× · · · ×Pn � A ‖C B if and only if Pk � A ‖C B for each
k ≤ n.



Proof. (⇒) : Suppose that r1
k, r

2
k ∈ Rk are such that

r1
k ≡C r2

k. We will show that there is a run rk ∈ Rk such
that r1

k ≡A,C rk ≡B,C r2
k.

Let (V,R) be protocol P1 × · · · × Pn. Consider any runs

r1 ∈ R1, . . . , rk−1 ∈ Rk−1, rk+1 ∈ Rk+1, . . . , rn ∈ Rn.

Such runs exists due to the assumption of the lemma. Let
r1, r2 ∈ R be such that for each secret variable x,

r1(x) = 〈r1(x), . . . , rk−1(x), r1
k(x), rk+1(x), . . . , rn(x)〉,

r2(x) = 〈r1(x), . . . , rk−1(x), r2
k(x), rk+1(x), . . . , rn(x)〉.

Note that r1
k ≡C r2

k implies that r1(c) ≡C r2(c). Hence,
by the assumption of the lemma, there is a run r ∈ R such
that r1 ≡A,C r ≡B,C r2. Let rk(x) be defined to be the
k-th component of r(x) for each secret variable x. Thus, by
Definition 9, rk ∈ Rk. Finally, r1 ≡A,C r ≡B,C r2 implies
that r1

k ≡A,C rk ≡B,C r2
k.

(⇐) : Suppose that r1, r2 ∈ R are such that r1 ≡C r2. We
will show that there is r ∈ R such that r1 ≡A,C r ≡B,C

r2. Assume that r1(x) = 〈r1
1(x), . . . , r1

n(x)〉, and r2(x) =
〈r2

1(x), . . . , r2
n(x)〉. Assumption r1 ≡C r2 implies that r1

k ≡C

r2
k for each k ≤ n. Thus, by the assumption of the lemma,

there are runs r1 ∈ R1, . . . , rn ∈ Rn such that r1
k ≡A,C

rk ≡B,C r2
k for each k ≤ n. Define r(x) = 〈r1(x), . . . , rn(x)〉,

Therefore, r1 ≡A,C r ≡B,C r2.

8.4 Completeness: final steps
We are now ready to finish the proof of the completeness

theorem. Let S be the finite set of all variables that appear
in the formula ϕ. Let Q1, . . . , Qn be all subsets of S. By
Lemma 7, there are protocols P1, . . . ,Pn such that

1. Pk � A ‖C B for each sets of secret variables A, B,
and C such that A ‖C B ∈ X,

2. Pk 2 P ‖Qk R for each sets of secret variables P and
R such that P ‖Qk R /∈ X.

Let P = P1 × · · · × Pn.

Lemma 9. For each ψ ∈ Φ that only uses secret variables
from set S, P � ψ if and only if ψ ∈ X.

Proof. Induction on the structural complexity of for-
mula ψ. Case ψ being ⊥ follows from the assumption of
consistency of X and Definition 3. The induction case ψ ≡
ψ1 → ψ2 follows from the maximality and consistence of set
X in the standard way. We are only left to consider the case
when ψ is an atomic formula P ‖Q R for some P,Q,R ⊆ S.
Assume that Q = Qk0 .
(⇒) : Suppose that X 0 P ‖Q R. Thus, Pk0 2 P ‖Q R
due to the choice of the protocol Pk0 . Note that each of the
protocols P1, . . . ,Pn has at least one run due to Lemma 7.
Thus, by Lemma 8, P 2 P ‖Q R.
(⇐) : If X ` P ‖Q R, then, Pk 2 P ‖Q R for each k ≤ n due
to the choice of the protocols P1, . . . ,Pn. Note again that
each of the protocols P1, . . . ,Pn has at least one run due to
Lemma 7. Thus, by Lemma 8, P � P ‖Q R.

Recall now that ¬ϕ ∈ X. Hence, ϕ /∈ X due to consis-
tency of X. Therefore, P 2 ϕ by Lemma 9. This concludes
the proof of Theorem 2.

9. CONCLUSION
In this paper we gave a recursively enumerable axiomati-

zation of propositional properties of relation A ‖C B, assum-
ing that sets A, B, and C are pair-wise disjoint. Although
Definition 3 is meaningful if the sets are not disjoint, our
completeness proof will not work (see Lemma 5). At the
same time, it is interesting to point out that due to Defi-
nition 3, statement B ‖A B means that any two runs that
agree on A also agree on B. Thus, B ‖A B represents func-
tional dependency relation between values of A and B. Func-
tional dependency alone was axiomatized by Armstrong [1].
It appears that allowing sets A, B, and C to be non-disjoint
leads to a significantly more powerful language. Complete
axiomatization of all properties expressible in such language
remains an open question.

10. REFERENCES
[1] W. W. Armstrong. Dependency structures of data

base relationships. In Information processing 74 (Proc.
IFIP Congress, Stockholm, 1974), pages 580–583.
North-Holland, Amsterdam, 1974.

[2] Michael S. Donders, Sara Miner More, and Pavel
Naumov. Information flow on directed acyclic graphs.
In Lev D. Beklemishev and Ruy de Queiroz, editors,
WoLLIC, volume 6642 of Lecture Notes in Computer
Science, pages 95–109. Springer, 2011.

[3] Dan Geiger, Azaria Paz, and Judea Pearl. Axioms and
algorithms for inferences involving probabilistic
independence. Inform. and Comput., 91(1):128–141,
1991.
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