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ABSTRACT
The paper introduces and studies the ternary relation“secret
a reveals at least as much information about secret c as
secret b .” In spite of its seeming simplicity, this relation has
many non-trivial properties. The main result is a complete
infinite axiomatization of the propositional theory of this
relation.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods; F.4.1 [Mathematical Logic]:
Mathematical Logic; I.2.3 [Artificial Intelligence]: De-
duction and Theorem Proving

General Terms
Theory

Keywords
information flow, secret, knowledge, completeness

1. INTRODUCTION
In this paper, we study the properties of interdependencies

between pieces of information. We call these pieces secrets
to emphasize the fact that they might be unknown to some
parties.

1.1 Functional Dependence and Independence
One of the simplest relations between two secrets is func-

tional dependence. We denote it by a� b. It means that the
value of secret a reveals the value of secret b. This relation
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is reflexive and transitive. A more general and less trivial
form of functional dependence is functional dependence be-
tween sets of secrets. If A and B are two sets of secrets,
then A � B means that, together, the values of all secrets
in A reveal the values of all secrets in B. Armstrong [1]
presented the following sound and complete axiomatization
of this relation:

1. Reflexivity: A�B, if A ⊇ B,

2. Augmentation: A�B → A,C �B,C,

3. Transitivity: A�B → (B � C → A� C),

where here and everywhere below A,B denotes the union
of sets A and B. The above axioms are known in database
literature as Armstrong’s axioms [4, p. 81]. Beeri, Fagin, and
Howard [2] suggested a variation of Armstrong’s axioms that
describe properties of multi-valued dependency.

Not all dependencies between two secrets are functional.
For example, if secret a is the area of a triangle and secret
p is the perimeter of the same triangle, then there is an
interdependence between these secrets in the sense that not
every value of secret a is compatible with every value of
secret p. However, neither a � p nor p � a is necessarily
true. If there is no interdependence between two secrets,
then we will say that the two secrets are independent. In
other words, secrets a and b are independent if any possible
value of secret a is compatible with any possible value of
secret b. We denote this relation between two secrets by
a ‖ b. This relation was introduced by Sutherland [14] and is
known in the theory of information flow as nondeducibility.
Halpern and O’Neill [6] proposed a closely related notion
called f -secrecy. Kelvey, More, Naumov, and Sapp [9] gave a
complete axiomatization of properties that connect relations
a ‖ b and a� b. More and Naumov also described properties
of a multi-argument variation of the relation a ‖ b under the
assumption that the secrets are generated over an undirected
graph [10], a directed acyclic graph [3], or a hypergraph [11]
with a fixed topology as well as similar properties of relation
A�B over undirected graphs [12].

Like functional dependence, independence also can be gen-
eralized to relate two sets of secrets. If A and B are two such
sets, then A ‖ B means that any consistent combination
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Figure 1: Telephone Game.

of values of secrets in A is compatible with any consistent
combination of values of secrets in B. Note that “consistent
combination” is an important condition here since some in-
terdependence may exist between secrets in set A even while
the entire set of secrets A is independent from the secrets
in set B. A sound and complete axiomatization of this in-
dependence relation between sets was given by More and
Naumov [12]:

1. Empty Set: ∅ ‖ A,

2. Monotonicity: A,B ‖ C → A ‖ C,

3. Symmetry: A ‖ B → B ‖ A,

4. Public Knowledge: A ‖ A→ (B ‖ C → A,B ‖ C),

5. Exchange: A,B ‖ C → (A ‖ B → A ‖ B,C).

Essentially the same axioms were shown by Geiger, Paz, and
Pearl [5] to provide a complete axiomatization of the inde-
pendence relation between random variables in probability
theory.

Suppose now that a, b, and c are three secrets with in-
teger values such that a + b = c. Note that a ‖ b is true
since every possible value of a is consistent with any pos-
sible value of b. Note, however, that if value of c is fixed,
then not every possible value of secret a is compatible with
every possible value of secret b. We will say that secrets
a and b are not independent conditionally on c and denote
this by ¬(a ‖c b). The conditional independence relation is
also known as embedded multivalued dependency in database
theory. Herrmann [7, 8] proved the undecidability of the
propositional theory of the conditional independence rela-
tion on sets of secrets. Studený [13] has shown that the
related conditional independence in probability theory has
no complete finite characterization.

1.2 The Ternary Knowledge Relation
If secret b is functionally determined by secret a, or in

our notation, a � b, then secret a reveals at least as much
information as secret b. In this paper we study the ternary
knowledge relation “secret a reveals at least as much infor-
mation about secret c as secret b.” For instance, consider the
variation of the Telephone game1 depicted in Figure 1: per-
son P picks a random binary string a and communicates it
to Q. Person Q changes at most one bit of a, and communi-
cates it to person R as b. Finally, R again changes at most
one bit in b and communicates it to S as c. Note that in this
situation secret c is not functionally determined by secret b,
however, knowing string b reveals more about string a than
knowing string c. Indeed, suppose that a0, b0, and c0 are
the values of a, b, and c, respectively, in a certain round of
the game. This of course, means that h(b0, c0) ≤ 1, where

1This game is also known as Chinese Whispers, Grapevine,
Broken Telephone, Whisper Down the Lane, and Gossip.

h(x, y) is the Hamming distance between strings x and y.
If somebody knows b0, then this person can conclude that
a0 ∈ Ball(b0, 1) = {x | h(x, b0) ≤ 1}. At the same time,
if one knows only c0, then all that can be concluded about
string a0 is that a0 ∈ Ball(c0, 2) = {x | h(x, c0) ≤ 2}. Note
that Ball(b0, 1) ⊂ Ball(c0, 2) due to h(b0, c0) ≤ 1 and the
triangle inequality. Therefore, in any round of the game, the
value of secret b always reveals at least as much about the
value of secret a the value of secret c. We will denote this
by b�c

a. One can similarly show that b�a
c .

Of course, although statement b�c
a is true for the Tele-

phone game semantics, it might be false for some other in-
terpretation of secrets a, b, and c. In this paper we study
the logical properties of relation a�b

c that are true for any
secrets. A trivial example of such a property is transitivity:

a�b
c → (b�d

c → a�d
c).

It turns out, however, that in spite of the seeming simplic-
ity of this relation, it has many non-trivial properties. For
example, the following statement is true for any secrets a,
b, c, d, e, and f :

(a�b
c) ∧ (b�e

d) ∧ (c�d
f ) ∧ (d�e

f )→ (a�e
f ).

To see the pattern in the assumptions of the above formula,
we can arrange them into a “diamond” shape:

b�e
d

a�b
c d�e

f → a �e
f .

c�d
f

(1)

In some sense, this property is a ternary version of transitiv-
ity. An even more general version of transitivity is captured
by the following formula, which, as we will show, is also true
for any secrets:

e�g
h

b�e
d h�g

k

a�b
c d�h

i k�g
j → a�g

j .

c�d
f i�k

j

f �i
j

(2)

We will prove soundness of the principles (1) and (2) in
Theorem 4.

The main result of this paper is a complete infinite axiom-
atization of relation a�b

c between three arbitrary secrets.
The above principles (1) and (2) are two instances of the
transitivity axiom schema in our logical system. In the con-
clusion of this paper, we discuss a connection between rela-
tion a�b

c and embedded multivalued dependency.

2. SEMANTICS
We assume a fixed alphabet of “secret” variables: a, b, . . . .

By an atomic formula we mean either ⊥ or a�b
c for some

secret variables a, b, and c. By formula we mean either an
atomic formula of a combination of several atomic formulas
using binary connective →. All other boolean connectives
are assumed to be defined through ⊥ and →.

Definition 1. A protocol is a pair P = 〈V,R〉, where,

1. for any secret variable a, set V (a) is an arbitrary set
of “values” of secret a,

2. R is a set of functions r on secret variables such that
r(a) ∈ V (a) for any secret variable a. Elements of R
will be called “runs” of the protocol.



In a given protocol, if b0 ∈ V (b) is a value of secret b,
than by Balla(b0) we will mean the set of all possible values
of a that are consistent with value b0. We use the notation
Ball to emphasize connection with Balls defined through
the Hamming distance metric in the previous section. The
formal definition of Ball, in the more general setting of an
arbitrary protocol, is, of course, different:

Definition 2. For any protocol 〈V,R〉, any two secret
variables a and b, and any b0 ∈ V (b),

Balla(b0) = {r(a) | r(b) = b0 and r ∈ R}.

Definition 3. For any protocol P = 〈V,R〉 and any for-
mula φ, we define the binary relation P � φ as follows:

1. P 2 ⊥,

2. P � a�b
c if and only if, for any r ∈ R,

Ballc(r(a)) ⊆ Ballc(r(b)),

3. P � φ→ ψ if and only if P 2 φ or P � ψ.

3. DIAMOND NOTATION
Before stating the axioms of our logical system, we want to

introduce a compact notation for the diamond-shaped pat-
terns of formulas that has already appeared in formulas (1)
and (2). In general, we will consider patterns depicted in
Figure 2, where {aij}i,j are secret variables. For such pat-

terns, it will be assumed that an0 = an+1
0 = · · · = a2n−1

0

and ann = an+1
n−1 = · · · = a2n−1

1 . In other words, all variables
along the upper-right edge of the diamond are the same and
all variables along the lower-right edge of the diamond are
also the same. No other assumptions about variables in
the diamond pattern are made. In particular, the variables
along the upper-right edge do not have to be the same as
the variables along lower-right edge.

We will also use diamond patterns as propositional for-
mulas. If a diamond pattern appears as a formula, then it
should be viewed as notation for the conjunction∧

i,j

aij�
ai+1
j

ai+1
j+1

, (3)

where the conjunction is taken for all pairs (i, j) except for
those that correspond to variables aij that are located along
upper-right or lower-right edge of the diamond.

For example, the formula which appeared earlier as (1) can
now be written more compactly as the following implication
between two diamonds:

e
b e

a d
c f

f

−→
f

a
e
.

Similarly, formula (2) can now be written as the implication

g
e g

b h g
a d k

c i j
f j

j

−→
g

a
j
.

Note a certain resemblance between condition (3) and the
recurrence relation defining the Pascal triangle.

4. AXIOMS
In addition to the propositional tautologies and the Modus

Ponens inference rule, our logical system includes the fol-
lowing axioms of Reflexivity, Symmetry, and Transitivity.
Transitivity is technically a schema that generates infinitely
many axioms for diamond patterns of different sizes.

Reflexivity

a
a

b

Symmetry

b
a

c
−→

c
a

b

Transitivity

b
. . . . . .

. . . . . . b
a . . . . . .

. . . . . . c
. . . . . .

c

−→
b

a
c

Of course, the Reflexivity and Symmetry axioms can be
stated without diamond notation as: a�a

b and a�b
c → a�c

b

respectively. Formulas (1) and (2) are instances of the Tran-
sitivity schema. While the soundness of the Reflexivity ax-
iom is straightforward, the soundness of the Symmetry ax-
iom and the Transitivity schema is not immediately obvious.
We prove the soundness of all three axioms in the next sec-
tion.

We will write X ` φ to state that that formula φ is prov-
able in our logical system using additional (possibly empty)
set of axioms X.

5. SOUNDNESS

Theorem 1 (reflexivity). P � a�a
b , for any proto-

col P.

Proof. For any run r of protocol P,

Ballb(r(a)) ⊆ Ballb(r(a))

due to the reflexivity of the subset relation.

Although relation P � a�b
c is defined in terms of sets

Ballc(a) and Ballc(b), proving many properties of this rela-
tion is much easier using an alternative definition captured
by the following definition and theorem:

Definition 4. For any secret variable a, runs r1 and r2
are a-equivalent if r1(a) = r2(a).

We denote this relation by r1 ≡a r2.

Theorem 2. If P is an arbitrary protocol, then P � a�b
c

if and only if ∀r1∀r2(r1 ≡a r2 → ∃r(r1 ≡b r ≡c r2)), where
the quantifiers are over the set of all runs of protocol P.



an0
an−1
0 an+1

0

. . . an1 . . .
a20 . . . . . . . . .

a10 . . . . . . . . . a2n−1
0

a00 a21 . . . . . . . . .
a11 . . . . . . . . . a2n−1

1

a22 . . . . . . . . .
. . . ann−1 . . .

an−1
n−1 an+1

n−1

ann

,

Figure 2: Diamond Pattern

Proof. (⇒) Suppose r1 and r2 are runs of P such that
r1 ≡a r2. We will show that there is a run r such that
r1 ≡b r ≡c r2. Indeed, by the assumption of the theo-
rem, P � a�b

c. Thus, Ballc(r1(a)) ⊆ Ballc(r1(b)). Taking
into account the assumption r1 ≡a r2, we can conclude that
Ballc(r2(a)) ⊆ Ballc(r1(b)). Note that this means

r2(c) ∈ {r(c) | r(a) = r2(a)} = Ballc(r2(a)) ⊆
⊆ Ballc(r1(b)) = {r(c) | r(b) = r1(b)}.

Therefore, there must be a run r such that r1 ≡b r ≡c r2.
(⇐) We will show that Ballc(r1(a)) ⊆ Ballc(r1(b)) for any

run r1 of protocol P. Assume that c0 ∈ Ballc(r1(a)). We
will prove that c0 ∈ Ballc(r1(b)). Note that the assumption
c0 ∈ Ballc(r1(a)), by Definition 2, implies that c0 = r2(c) for
some run r2 such that r2 ≡a r1. Thus, by the assumption of
the theorem, there must be a run r such that r1 ≡b r ≡c r2.
Hence,

c0 = r2(c) ∈ {r(c) | r(b) = r1(b)} = Ballc(r1(b)).

Theorem 3 (symmetry). For any protocol P, if P �
a�b

c, then P � a�c
b.

Proof. Follows from Theorem 2 and symmetry of the
relation r1 ≡a r2.

Theorem 4 (transitivity). Suppose P is a protocol

such that P � aij�
ai+1
j

ai+1
j+1

for every i and j, where aij is not

located on either the upper-right or lower-right edge of the
diamond pattern (see Figure 2). For any runs r− and r+ of
protocol P such that r− ≡a0

0
r+, there is a run r of protocol

P such that r− ≡
a2n−1
0

r ≡
a2n−1
1

r+.

Proof. Assume that r+ ≡a0
0
r−.

Lemma 1. For any 0 ≤ i ≤ n, there are runs r0, . . . , ri−1

such that

r− ≡ai
0
r0 ≡ai

1
r1 ≡ai

2
· · · ≡ai

i−1
ri−1 ≡ai

i
r+.

Proof. We use induction on i. If i = 0, then r+ ≡a0
0
r−

by our assumption. Suppose now that

r− ≡ai
0
r0 ≡ai

1
r1 ≡ai

2
· · · ≡ai

i−1
ri−1 ≡ai

i
r+. (4)

By Theorem 2 and the equivalences from line (4), there must
be runs r′0, . . . , r

′
i such that

r− ≡
ai+1
0

r′0 ≡ai+1
1

r0

r0 ≡
ai+1
1

r′1 ≡ai+1
2

r1

. . .

ri−1 ≡
ai+1
i

r′i ≡ai+1
i+1

r+.

Thus,

r− ≡
ai+1
0

r′0 ≡ai+1
1

r′1 ≡ai+1
2

r′2 ≡ai+1
3

. . .

· · · ≡
ai+1
i−1

r′i−1 ≡ai+1
i

r′i ≡ai+1
i+1

r+.

Lemma 2. For any integer 0 ≤ i ≤ n− 1, there are runs
r0, . . . , rn−i−1 such that

r− ≡
an+i
0

r0 ≡an+i
1

r1 ≡an+i
2
· · · ≡

an+i
n−i−1

rn−i−1 ≡an+i
n−i

r+.

Proof. Induction on i. If i = 0, then the statement is
true by Lemma 1. Suppose now that

r− ≡
an+i
0

r0 ≡an+i
1

r1 ≡an+i
2

. . .

· · · ≡
an+i
n−i−1

rn−i−1 ≡an+i
n−i

r+. (5)

By Theorem 2, there must be runs r′0, . . . , r
′
n−i−2 such

that

r0 ≡
an+i+1
0

r′0 ≡an+i+1
1

r1

r1 ≡
an+i+1
1

r′1 ≡an+i+1
2

r2

. . .

rn−i ≡an+i+1
n−i−2

r′n−i−2 ≡an+i+1
n+i−1

rn−i−1.

Thus, taking into account equivalencies (5),

r− ≡
an+i
0

r0 ≡an+i+1
0

r′0 ≡an+i+1
1

r1 ≡an+i+1
1

r′1 ≡an+i+1
2

· · · ≡
an+i+1
n−i−2

r′n−i−2 ≡an+i+1
n+i−1

rn−i−1 ≡an+i
n−i

r+.

Recall that a diamond pattern must contain the same vari-
ables along the upper-right and lower-right edges. In other
words, an+i

0 is the same variable as an+i+1
0 and an+i

n−i is the

same variable as an+i+1
n+i−1. Thus,

r− ≡
an+i+1
0

r0 ≡an+i+1
0

r′0 ≡an+i+1
1

r1 ≡an+i+1
1

r′1 ≡an+i+1
2

· · · ≡
an+i+1
n−i−2

r′n−i−2 ≡an+i+1
n+i−1

rn−i−1 ≡an+i+1
n−i−1

r+.



Therefore,

r− ≡
an+i+1
0

r′0 ≡an+i+1
1

r′1 ≡an+i+1
2

· · · ≡
an+i+1
n−i−2

r′n−i−2 ≡an+i+1
n+i−1

r+.

In the case where i = n− 1, Lemma 2 implies that there is
a run r such that r− ≡

a2n−1
0

r ≡
a2n−1
1

r+. This concludes

the proof of the theorem.

6. COMPLETENESS

6.1 Hexagonal Patterns
We have previously introduced a diamond pattern in or-

der to state the Transitivity schema. To prove the com-
pleteness of our system, we will consider the more gen-
eral “hexagonal” pattern depicted in Figure 3. In this pat-
tern, it will be assumed that an0 = an+1

0 = · · · = am0 and
ann+k = an+1

n+k−1 = · · · = am2n+k−m. In other words, just
as with the diamond pattern, all variables along the upper-
right edge of the hexagon are the same and all variables along
the lower-right edge of the hexagon are also the same. The
hexagon is not assumed to be regular in the sense that the
only restrictions on k, n, and m are k ≥ 0 and m ≥ n ≥ 0.
In the extreme cases, when n = 0 or n = m, the hexagonal
pattern actually has a trapezoidal shape.

Definition 5. For any set of formulas X and any se-
quences of secret variables A and B, we write A 9X B if
there is a hexagonal pattern (see Figure 3) that satisfies the
following three conditions:

1. A = a00, a
0
1, . . . , a

0
k−1, a

0
k,

2. X ` aij�
ai+1
j

ai+1
j+1

for all pairs (i, j) except for those that

correspond to secret variables aij located along the upper-
right or lower-right edge of the hexagon,

3. B = am0 , a
m
1 , . . . , a

m
2n+k−m−1, a

m
2n+k−m.

We now will state and prove basic properties of the hexag-
onal patterns that will be used in the proof of completeness.

Lemma 3. a 9X a, for any secret variable a.

Proof. The single-element hexagonal pattern consisting
of only the single variable a satisfies the requirements.

Lemma 4. If a1, a2, . . . , an 9X b1, b2 . . . , bk, then

an, . . . , a2, a1 9X bk, . . . , b2, b1.

Proof. The statement of the lemma follows from the
Symmetry axiom.

Lemma 5. If A 9X B and B 9X C, then A 9X C.

Proof. Let A = a1, . . . , an, B = b1, . . . , bk, and C =
c1, . . . , cm. Note that hexagonal patterns for A 9X B and
B 9X C can be “stitched” together along edge b1, . . . , bk:

b1
. . . b1 c1

a1 . . . b1 . . . c1
. . . . . . b1 . . . c1

a2 . . . . . . . . . . . .
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
. . . . . . bk . . . cm

an . . . bk . . . cm
. . . bk cm

bk

To convert this double-hexagonal pattern into a hexagonal
pattern, we complete the upper portion of the pattern with
b1 and the lower portion with bk as shown below:

b1
b1 b1

b1 b1 b1
. . . b1 b1 c1

a1 . . . b1 . . . c1
. . . . . . b1 . . . c1

a2 . . . . . . . . . . . .
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
. . . . . . bk . . . cm

an . . . bk . . . cm
. . . bk bk cm

bk bk bk
bk bk

bk

To finish the proof, we need to show that condition 2 from
Defintion 5 is satisfied in the newly-filled-in areas. For the
upper area, it is sufficient to show that X ` b1�b1

q for any
secret variable q, which is true due to the Reflexivity axiom.
For the lower area, it is sufficient to show that X ` bk�q

bk
for any secret variable q, which is true by the Reflexivity
and Symmetry axioms.

Lemma 6. If A 9X B, then C,A,D 9X C,B,D.

Proof. Assume that A 9X B. Let A = a1, . . . , an, B =
b1, . . . , bk, C = c1, . . . , cm, and D = d1, . . . , dl. Consider the
corresponding hexagonal pattern:

b1
. . . b1

. . . . . . b1
a1 . . . . . . b1

. . . . . . . . .
. . . . . . . . . . . .

. . . . . . . . .
an . . . . . . bk

. . . . . . bk
. . . bk

bk

Consider a new pattern obtained by“sandwiching”the above



an0
an−1
0 an+1

0

. . . an1 . . .
a10 . . . . . . am−1

0

a00 . . . . . . . . . am0
a11 . . . . . . am−1

1

a01 . . . . . . . . . am1
. . . . . . . . . . . .

. . . . . . . . . . . . . . .
. . . . . . . . . . . .

a0k−1 . . . . . . . . . am2n+k−m−1

a1k . . . . . . . . .
a0k . . . . . . . . . am2n+k−m

a1k+1 . . . . . . . . .
. . . ann+k−1 . . .

an−1
n+k−1 an+1

n+k−1

ann+k

Figure 3: Hexagonal Pattern

pattern between layers of c1, . . . , cm and d1, . . . , dl:

c1
c1 c1

c1 . . . c1
c1 . . . . . . c1

. . . cm . . .
. . . cm cm . . .

cm b1 cm
cm . . . b1 cm

. . . . . . b1
a1 . . . . . . b1

. . . . . . . . .
. . . . . . . . . . . .

. . . . . . . . .
an . . . . . . bk

. . . . . . bk
d1 . . . bk d1

d1 bk d1
. . . d1 d1 . . .

. . . d1 . . .
dl . . . . . . dl

dl . . . dl
dl dl

dl

To finish the proof, we need to show that condition 2 from
Defintion 5 is satisfied. Indeed, it follows from axioms of Re-
flexivity and Symmetry and the fact that the same condition
is satisfied in the original pattern.

Lemma 7. A,C 9X A, b, C, for any secret variable b and
any two sequences A and C such that at least one of se-
quences A and C is not empty.

Proof. Without loss of generality (due to Lemma 4),
assume that sequence A is non-empty. Let A = A′, a for
some secret variable a. Consider hexagonal pattern

a
a

b

Due to the Reflexivity axiom, ` a�a
b . Thus, a 9X a, b.

By Lemma 6, we have A′, a, C 9X A′, a, b, C. Therefore,
A,C 9X A, b, C.

Lemma 8. A, b, b, C 9X A, b, C, for any secret variable b
and any two sequences of secret variables A and C.

Proof. Consider the hexagonal pattern

b
b

b

Thus, b, b 9X b. By Lemma 6, A, b, b, C 9X A, b, C.

Definition 6. For any n ≥ 0 and any secret variable a,
by an we mean the sequence a, . . . , a︸ ︷︷ ︸

n

.

Lemma 9. an 9X a, for any n ≥ 1 and any variable a.

Proof. We use induction on n. Base Case: If n = 1,
then the required follows from Lemma 3. Induction Step:
Let n > 1. Assume an−1 9X a. By Lemma 8, since n > 1,
we have an 9Xa

n−1. By Lemma 5, we can conclude that
an 9X a.

Lemma 10. an, bm 9X a, b, for any secret variable a and
any n,m ≥ 0 such that n+m ≥ 1.

Proof. Due to Lemma 4, without loss of generality we
may assume that n > 0. We will consider cases m = 0
and m > 0 separately. Case I: If m = 0, then, by Lemma 9,
an 9X a. At the same time, by Lemma 7, we have a 9X a, b.
Hence, by Lemma 5, an 9X a, b.
Case II: If m > 0, then, by Lemma 9, an 9X a and bm 9X b.
By Lemma 6, an, bm 9X a, bm and a, bm 9X a, b. Finally, by
Lemma 5, an, bm 9X a, b.

6.2 Graph Semantics
In this section we will define a “graph semantics” for the

relation a�b
c and prove the completeness of our formal sys-

tem with respect to this new semantics. Later we will use
this result to prove completeness with respect to the original
semantics of secrets.



By graph we mean a (possibly infinite) undirected graph
whose edges are labeled by secret variables. Each edge will
be assumed to have a unique label. Multiple edges between
the same vertices are allowed, but loop edges are not.

Let a be a secret variable. We say that two vertices are
a-equivalent, if there is a path between these two vertices
such that each edge along this path is labeled with a. Note
that a-equivalence is an equivalence relation on vertices. If
vertices u and v are a-equivalent, then we write u ∼a v.

Definition 7. For any graph G and any formula φ, we
define the binary relation G � φ as follows:

1. G 2 ⊥,

2. G � a�b
c if and only if, for any vertices v and u such

that v ∼a u, there is a vertex w such that v ∼b w and
w ∼c u.

3. G � φ→ ψ if and only if G 2 φ or G � ψ.

Theorem 5. If G � φ, for each graph G, then ` φ.

Proof. Suppose that 0 φ. Let X be a (countable) maxi-
mal consistent set of formulas that contains ¬φ. Let {ai�bi

ci}i∈I
be the (at most countable) set of all atomic formulas in X
and {dj�

ej
fj
}j∈J be the (at most countable) set of all atomic

formulas that do not belong to X.
For each j ∈ J , we define an infinite chain of finite graphs

Gj
0 ⊂ G

j
1 ⊂ G

j
2 ⊂ . . . such that Gj

k is a subgraph of Gj
k+1 for

each k. Let Gj
0 be a graph with just two vertices, denoted

by v− and v+, and a single edge between these two vertices
labeled by dj .

Assume that Gj
k is already defined and that vertices u and

v are ai-equivalent in graph Gj
k for some i ∈ I. We define

graph Gj
k+1 by adding a new vertex w and edges (u,w) and

(w, v) to graph Gj
k. Edge (u,w) is labeled with bi and edge

(w, v) is labeled with ci. Note that the construction of graph
Gj

k+1 depends on the particular choice of u, v, and i. We

will specify this choice later. Let Gj =
⋃

kGk.

Lemma 11. If there is a simple2 path π in graph Gj from
v− to v+ labeled by sequence L = l1, . . . , ln, then dj 9X L.

Proof. Consider the chain Gj
0 ⊂ Gj

1 ⊂ . . . , and let Gj
k

be the first graph in the chain that contains the entire path
π. We will prove the lemma by induction on k.
Base Case: If π existed in Gj

0, then L = l1 = dj . Hence, by
Lemma 3, dj 9X L.
Induction Step: Suppose now that path π first appeared in
graphGj

k+1, which was obtained by adding new vertex w and
edges (u,w) and (w, v) labeled with bi and ci respectively,
where ai�bi

ci ∈ X and u ∼ai v. Thus, path π must contain
edges (u,w) and (w, v). There are two possible orders in
which path π can go through these two edges (see Figure 4).
We consider these two cases separately.
Case 1: Path π, in the direction from v− to v+, first passes
through edge (u,w) and then edge (w, v). Thus, we have
L = L1, bi, ci, L2, where labels L1 are on the edges along
path π between vertices v− and u and L2 are on the edges
along path π between vertices v and v+. Since u ∼ai v,

there must be a path between u and v in graph Gj
k whose

edges are all labeled by ai. Thus, in graph Gj
k, there was a

2without self-intersections

v- v+

u

v

w

L1
L2

( ai )
n

bi

ci

dj0

Gk

v- v+

u

v

w

L1L2

(ai )
n

bi

ci

dj0

Gk

Figure 4: Graph Gj
k+1. Case 1 (left) and Case 2

(right).

path between v− and v+ labeled by L1, (ai)
n, L2 for some

n ≥ 0. Hence, by the Induction Hypothesis,

dj0 9X L1, (ai)
n, L2. (6)

First, assume that n = 0. Thus,

dj0 9X L1, L2. (7)

Note that since v− and v+ are two distinct vertices, the sum
of the lengths of sequences L1 and L2 is not zero. Thus, by
Lemma 7,

L1, L2 9X L1, bi, L2

and

L1, bi, L2 9X L1, bi, ci, L2.

Hence, Lemma 5, L1, L2 9XL1, bi, ci, L2. By statement (7)
and Lemma 5, dj0 9X L1, bi, ci, L2.

Second, suppose that n > 0 and consider the pattern

bi
ai

ci

(8)

Recall that ai�bi
ci ∈ X. Thus, ai 9X bi, ci. By Lemma 9,

(ai)
n 9X ai. Hence, by Lemma 5, (ai)

n 9X bi, ci. By
Lemma 6, L1, (ai)

n, L2 9X L1, bi, ci, L2. Taking into ac-
count statement (6) and Lemma 5, dj0 9X L1, bi, ci, L2.
Case 2: Path π, in the direction from v− to v+, first passes
through edge (v, w) and then edge (w, u). See Figure 4. In
this case, instead of pattern (8), consider pattern

ci
ai

bi

To show that ai 9X ci, bi, notice that, by our assumption,
ai�bi

ci ∈ X. Thus, by the Symmetry axiom, X ` ai�ci
bi

. The
rest of the proof is identical to Case 1.

Lemma 12. Gj 2 dj�
ej
fj

, for each j ∈ J .

Proof. Assume that Gj � dj�
ej
fj

. Note that v− ∼dj v
+

by the definition of Gj
0. By Definition 7, there must be a

vertex w such that v− ∼ej w and w ∼fj v
+. Thus, graph

Gj contains a path π from v− to v+ labeled by the sequence



(ej)
n, (fj)

m for some integers n and m. Since v− and v+

are different vertices, n+m > 0. By Lemma 11,

dj 9X (ej)
n, (fj)

m.

By Lemma 9 and Lemma 5,

dj 9X ej , fj .

By the Transitivity Axiom, X ` dj�
ej
fj

. By the maximality

of X, dj�
ej
fj
∈ X, which is a contradiction with {dj�

ej
fj
}j∈J

being the set of all atomic formulas that do not belong to
X.

Recall now that we left some flexibility in the choice of
u, v, and i, when we defined extension Gj

k+1 of graph Gj
k.

We can use this flexibility as well as the countability of set
I and the set of vertices in graph Gj to guarantee that, at
some point, the expansion is applied to each possible triple
u, v, and i such that u ∼ai v in graph Gj . This will imply
that the following statement is true:

Proposition 1. For any i ∈ I and any vertices u and v
in Gj such that u ∼ai v, there is a vertex w in Gj such that
u ∼bi w and w ∼ci v.

Let graph G be the disjoint union of graphs {Gj}j∈J .

Lemma 13. For any formula ψ,

G � ψ iff ψ ∈ X.

Proof. We use induction on the structural complexity of
formula ψ. If ψ is ⊥, then the statement is true due to the
consistency of set X. Suppose now that ψ is formula p�q

r.
(⇒) Assume that p�q

r /∈ X. Thus p�q
r is dj0�

ej0
fj0

for some

j0 ∈ J . By Lemma 12, Gj0 2 p�q
r. It means that there are

vertices v and u in graph Gj0 such that v ∼p u, but for any
vertex w of Gj0 either v 6∼q w or w 6∼r u. Since G is the
disjoint union of graphs {Gj}j∈J , the same is true for graph
G. Therefore, G 2 p�q

r.

(⇐) Let p�q
r ∈ X. Thus p�q

r is ai0�
bi0
ci0

for some i0 ∈ I.
Consider any vertices v and u in graph G such that v ∼p u.
Since G is the disjoint union of graphs {Gj}j∈J , vertices v
and u must belong to the same component Gj0 of the graph
G. By Proposition 1, there is a vertex w in component Gj0

such that v ∼q w and w ∼r u.
When formula ψ is an implication, the induction step of

the proof follows trivially from the maximality and consis-
tency of set X.

Finally, φ /∈ X due to the consistency of set X. Thus, by
Lemma 13, G 2 φ. This concludes the proof of Theorem 5.

6.3 Semantics of Secrets
In this section, we will use the graph completeness result

from the previous section to prove the completeness of our
logical system with respect to the original semantics of se-
crets from Definition 1.

Theorem 6. If P � φ, for each protocol P, then ` φ.

Proof. Suppose that 0 φ. By Theorem 5, there is a
graph G such that G 2 φ. We will define a protocol P =
〈V,R〉 and prove that P 2 φ. In the previous section, we
defined relation ∼a on the vertices of graph G for any label

a. Let V (a) be the set of all equivalence classes of vertices
of graph G with respect to equivalence relation ∼a.

For any vertex v of graph G, define function rv on labels
of graph G in such way that rv(a) is the equivalence class
of vertex v with respect to relation ∼a. Let R be the set of
such functions for all possible vertices v. This concludes the
definition of the protocol P.

Lemma 14. For any vertices u and v,

u ∼a v iff ru ≡a rv

Proof. Follows from the above definition of run rv(a).

Lemma 15. For any secret variables p, q, r.

P � p�q
s iff G � p�q

s .

Proof. Immediately follows from Theorem 2, Definition 7,
and Lemma 14.

Lemma 16. For any formula ψ,

P � ψ iff G � ψ.

Proof. We use induction on the structural complexity
of formula ψ. If ψ is ⊥, then both statements are false. If
ψ is p�q

s, then the claim follows from Lemma 15. The case
where ψ is an implication is trivial.

Note that P 2 φ by Lemma 16. This concludes the proof of
Theorem 6.

7. CONCLUSION
In this paper, we studied the ternary relation a�b

c between
secrets. Note that due to Lemma 2, this relation can be
defined alternatively as

∀r1∀r2(r1 ≡a r2 → ∃r(r1 ≡b r ≡c r2)).

In this alternate form, the definition of a�b
c is very similar

to the definition of the embedded multivalued dependency
b ‖a c:

∀r1∀r2(r1 ≡a r2 → ∃r(r1 ≡a,b r ≡a,c r2)),

where r′ ≡x,y r′′ means that runs r′ and r′′ agree on se-
cret variable x and secret variable y. It would be interest-
ing to see if the techniques developed in this paper could
be generalized to produce a complete axiomatization of the
embedded multivalued dependency.
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