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Abstract

We study logical principles connecting two relations: inde-
pendence, which is known as nondeducibility in the study of
information flow, and functional dependence. Two different
epistemic interpretations for these relations are discussed: se-
mantics of secrets and probabilistic semantics. A logical sys-
tem sound and complete with respect to both of these seman-
tics is introduced and is shown to be decidable.

Introduction
In this paper, we study the properties of interdependencies
between pieces of information. We call these pieces secrets
to emphasize the fact that they might be unknown to some
parties.

One of the simplest relations between two secrets is func-
tional dependency. We denote it as a B b. It means that the
value of secret a reveals the value of secret b. This relation
is reflexive and transitive. A more general and less trivial
form of functional dependency is functional dependency be-
tween sets of secrets. If A and B are two sets of secrets,
then ABB means that, together, the values of all secrets in
A reveal the values of all secrets in B. Armstrong (1974)
presented the following sound and complete axiomatization
of this relation:

1. Reflexivity: ABB, if A ⊇ B,
2. Augmentation: ABB → A,C BB,C,
3. Transitivity: ABB → (B B C → AB C),
where here and everywhere below A,B denotes the union
of sets A and B. The above axioms are known in database
literature as Armstrong’s axioms (Garcia-Molina, Ullman,
and Widom 2009, p. 81). Beeri, Fagin, and Howard (1977)
suggested a variation of Armstrong’s axioms that describe
properties of multi-valued dependency.

Not all dependencies between two secrets are functional.
For example, if secret a is a pair 〈x, y〉 and secret b is a
pair 〈y, z〉, then there is an interdependency between these
secrets in the sense that not every value of secret a is com-
patible with every value of secret b. However, neither a B b
nor b B a is necessarily true. If there is no interdependency
between two secrets, then we will say that the two secrets
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are independent. In other words, secrets a and b are inde-
pendent if any possible value of secret a is compatible with
any possible value of secret b. We denote this relation be-
tween two secrets by a ‖ b. This relation was introduced by
Sutherland (1986) and is also known as nondeducibility in
the study of information flow. Halpern and O’Neill (2008)
proposed a closely related notion called f -secrecy. More
and Naumov (2009b) gave a complete axiomatization of the
independence relation if secrets are generated over a collab-
oration network with a fixed topology.

Like functional dependence, independence also can be
generalized to relate two sets of secrets. If A and B are two
such sets, thenA ‖ B means that any consistent combination
of values of secrets in A is compatible with any consistent
combination of values of secrets in B. Note that “consistent
combination” is an important condition here since some in-
terdependency may exist between secrets in setA even while
the entire set of secrets A is independent from the secrets
in set B. A sound and complete axiomatization of this in-
dependence relation between sets was given by More and
Naumov (2009a):

1. Empty Set: ∅ ‖ A,

2. Monotonicity: A,B ‖ C → A ‖ C,

3. Symmetry: A ‖ B → B ‖ A,

4. Public Knowledge: A ‖ A→ (B ‖ C → A,B ‖ C),

5. Exchange: A,B ‖ C → (A ‖ B → A ‖ B,C).

Essentially the same axioms were shown by Geiger, Paz, and
Pearl (1991) to provide a complete axiomatization of the in-
dependence relation between random variables in probabil-
ity theory.

In this paper, we study properties that connect the inde-
pendence ‖ and functional dependence B relations. An ex-
ample of such a property, which we call the Substitution Ax-
iom, is a ‖ b→ (bB c→ a ‖ c). Its soundness with respect
to a formally-defined semantics of secrets is shown in The-
orem 1.

The main focus of this work is the independence and func-
tional dependence relations between single secrets, not sets
of secrets, as the single-secret setting already provides a
non-trivial system of properties. We describe a sound and
complete axiomatization of these properties, prove the de-
cidability of our logical system, and establish the indepen-



dence (in the standard logical sense) of its axioms. We also
prove the completeness of this system with respect to prob-
abilistic event semantics in the spirit of Geiger, Paz, and
Pearl (1991). In the conclusion, we discuss the extension
of this work to independence and functional dependence re-
lations defined on sets of secrets.

Language of Secrets
The language of secrets contains an infinite list of variables
a, b, c, . . . , that we will call secret variables. Atomic formu-
las in the language of secrets are a ‖ b and a B b, where a
and b are any two secret variables. An arbitrary formula in
the language of secrets is a boolean combination of atomic
formulas. We will assume that the only primitive proposi-
tional connectives in the language are→ and ⊥. Of course,
the other boolean operations can be expressed through these
two connectives.

Semantics of Secrets
We define semantics of secrets in terms of protocols and
runs. A protocol defines a domain for each secret variable.
However, not all combinations of value assignments to se-
crets are necessarily valid, since interdependencies between
secrets may exist. Thus, a protocol also defines the set of
legitimate combinations of assignments, which we call runs.
A protocol serves as a model for the logic of secrets.

Definition 1 A protocol is a pair 〈D,R〉, where

1. D is a function that assigns to each secret variable a set
(the domain of the secret variable),

2. R is a set of functions, called “runs”, such that each func-
tion r in this set maps each secret variable a into an ele-
ment r(a) of D(a).

Next, we present formal definitions of the independence
and functional dependence relations that were described in
the introduction.

Definition 2 For any protocol P = 〈D,R〉,
1. P � a ‖ b if for any runs r1, r2 ∈ R there is a run r ∈ R

such that r(a) = r1(a) and r(b) = r2(b).
2. P � a B b if for any runs r1, r2 ∈ R, if r1(a) = r2(a),

then r1(b) = r2(b).

The relation � is extended in the standard way to a relation
P � φ between a protocol P and an arbitrary (not necessar-
ily atomic) formula φ in the language of secrets.

Axiomatization
In this section we describe a formal logical system for the
predicates ‖ and B. This system is defined in the propo-
sitional language. One also can look at it as the universal
fragment of the first-order theory of these two predicates.

This system, like earlier systems defined by More and
Naumov (2009a; 2009b), belongs to the set of deductive sys-
tems that capture properties of secrets. In general, we refer
to such systems as logics of secrets. Since this paper is fo-
cused on only one such system, in this paper we simply call
itthe Logic of Secrets.

Before listing the axioms of the Logic of Secrets, it will
be helpful to discuss the meaning of the statement a ‖ a.
Note that under Definition 2, P � a ‖ a means that any
two runs of protocol P agree on their values of a. Thus,
secret a has just one value under this protocol. This means
that a is not really a “secret” in the ordinary sense. We will
call such secret variables public knowledge. In the axioms
we introduce below, both the Universal Independence and
Universal Dependence Axioms contain the assumption that
secret a is public knowledge.

Definition 3 The Logic of Secrets consists of the following
axioms, where a, b, and c are arbitrary secret variables:

1. Reflexivity: aB a,

2. Transitivity: aB b→ (bB c→ aB c),

3. Symmetry: a ‖ b→ b ‖ a,

4. Universal Independence: a ‖ a→ a ‖ b,

5. Universal Dependence: a ‖ a→ bB a,

6. Substitution: a ‖ b→ (bB c→ a ‖ c).

We write Ψ ` φ to state that formula φ is provable in the
Logic of Secrets from the set of formulas Ψ.

In the following theorem, we prove the soundness of the
above system with respect to the semantics of secrets.

Theorem 1 If ` φ, then P � φ, for any protocol P .

Proof. It will be sufficient to show that each of the six ax-
ioms above is valid for any protocol P .
Reflexivity. If r1(a) = r1(a), then clearly r1(a) = r1(a).
Transitivity. Assume P � aB b and P � bB c. Let r1(a) =
r2(a). Thus, r1(b) = r2(b). Therefore, r1(c) = r2(c).
Symmetry. This axiom follows from the symmetry of the
equality relation.
Universal Independence. Assume that P � a ‖ a. We will
show that P ` a ‖ b. Indeed, let r1 and r2 be any two runs.
We need to show that there is a run r such that r(a) = r1(a)
and r(b) = r2(b). We will show that r2 could serve as r.
Indeed, by assumption P � a ‖ a, there is a run r′ such that
r1(a) = r′(a) = r2(a). Hence, r2(a) = r1(a). At the same
time, obviously, r2(b) = r2(b).
Universal Dependence. Assume that P � a ‖ a. We will
show that P ` b B a. Let r1 and r2 be any two runs such
that r1(b) = r2(b). We will show that r1(a) = r2(a). By
assumption P � a ‖ a, there is a run r such that r1(a) =
r(a) = r2(a). Therefore, r1(a) = r2(a).
Substitution. Assume that P � a ‖ b and P � b B c. We
will show that P � a ‖ c. Indeed, let r1, r2 ∈ R. By the
first assumption, there is r ∈ R such that r(a) = r1(a)
and r(b) = r2(b). By the second assumption, r(b) = r2(b)
implies that r(c) = r2(c). Therefore, r(a) = r1(a) and
r(c) = r2(c).

�



Set Semantics
In this section we introduce an alternate semantics for the
Logic of Secrets. This semantics is a technical tool that we
use to obtain our main results. We will use set semantics to
prove the decidability and completeness of the Logic of Se-
crets with respect to the semantics of secrets defined earlier.
Later, we will define a probabilistic semantics for the Logic
of Secrets, and we will use set semantics once again to prove
the completeness of the Logic of Secrets with respect to the
probabilistic semantics.

Definition 4 A set semantics is a pair 〈X, τ〉, whereX is an
arbitrary finite set and τ is a function from secret variables
into subsets of X .

Definition 5 For any set semantics S = 〈X, τ〉 we define
the meaning of atomic formulas in the language of secrets
as follows:

1. S � a ‖ b if and only if τ(a) ∩ τ(b) = ∅,
2. S � aB b if and only if τ(a) ⊇ τ(b).

The relation � can be extended in the standard way to a re-
lation S � φ between a set semantics S and arbitrary (not
necessarily atomic) formula φ in the language of secrets.

The soundness of the Logic of Secrets with respect to the
semantics of sets is demonstrated in the theorem below.

Theorem 2 If ` φ, then S � φ, for any set semantics S.

Proof. The soundness of the Reflexivity and Transitivity
Axioms follows from the reflexivity and transitivity of the
superset relation. The soundness of the Symmetry Axiom
follows from the symmetry of intersection. The soundness
of the Universal Independence and Universal Dependence
Axioms follows from the fact that S � a ‖ a implies that
τ(a) is empty. Finally, to prove the soundness of the Sub-
stitution Axiom, we only need to note that τ(a) ∩ τ(b) = ∅
and τ(b) ⊇ τ(c) imply that τ(a) ∩ τ(c) = ∅. �

Next, we prove that the Logic of Secrets is complete with
respect to this set semantics.

Theorem 3 If S � φ for any set semantics S, then ` φ.

Proof. Assume that 0 φ. Let V be the finite set of all secret
variables that appear in φ, and let Ψ be a maximal consistent
set of formulas that only use variables from V such that φ /∈
Ψ. For any u, v ∈ V we select a new symbol xu,v . We are
now ready to define a semantics S = 〈X, τ〉.

1. X = {xu,v | Ψ 0 u ‖ v},
2. τ(a) = {xu,v | Ψ ` aB u or Ψ ` aB v}.
Lemma 1 For any a, b ∈ V , S � a ‖ b if and only if Ψ `
a ‖ b.
Proof. (⇒) : Assume that Ψ 0 a ‖ b. Thus, xa,b ∈ X .
By the Reflexivity Axiom, ` a B a and ` b B b. Hence,
xa,b ∈ τ(a) and xa,b ∈ τ(b). Thus, τ(a) ∩ τ(b) 6= ∅.
Therefore, S 2 a ‖ b.
(⇐) : Suppose that Ψ ` a ‖ b, but S 2 a ‖ b. Thus, there is
xc,d ∈ X such that xc,d ∈ τ(a)∩ τ(b). Hence, Ψ ` aB c or
Ψ ` a B d, and, at the same time, Ψ ` b B c or Ψ ` b B d.
We will consider four separate cases:

Case 1: Ψ ` aB c and Ψ ` bB d. From Ψ ` a ‖ b by the
Substitution Axiom, we get Ψ ` a ‖ d. By the Symmetry
Axiom, Ψ ` d ‖ a. Again by the Substitution Axiom, Ψ `
d ‖ c. Again by Symmetry, Ψ ` c ‖ d. Hence, xc,d /∈ X .
Contradiction.

Case 2: Ψ ` aB d and Ψ ` bB c. Similar to Case 1.
Case 3: Ψ ` aBc and Ψ ` bBc. By the Substitution Ax-

iom, Ψ ` a ‖ c. By the Symmetry Axiom, Ψ ` c ‖ a. Again
by Substitution, Ψ ` c ‖ c. By the Universal Independence
Axiom, Ψ ` c ‖ d. Hence, xc,d /∈ X . Contradiction.

Case 4: Ψ ` aB d and Ψ ` bB d. Similar to Case 3.
�

Lemma 2 For any a, b ∈ V , S � a B b if and only if Ψ `
aB b.

Proof. (⇒) : Assume that Ψ 0 a B b. By the Universal
Dependence Axiom, Ψ 0 b ‖ b. Hence xb,b ∈ X . At the
same time, Ψ 0 aB b implies that xb,b /∈ τ(a). On the other
hand, by the Reflexivity Axiom, ` bBb. Hence, xb,b ∈ τ(b).
Thus, τ(a) + τ(b). Therefore, S 2 aB b.
(⇐) : Assume Ψ ` a B b. We will show that τ(a) ⊇ τ(b).
Indeed, let xc,d ∈ τ(b). Thus, either Ψ ` bB c or Ψ ` bBd.
Without loss of generality, assume that Ψ ` b B c. By the
Transitivity Axiom, Ψ ` aB c. Therefore, xc,d ∈ τ(a). �

Lemma 3 For any formula ψ using only secret variables
from V , S � ψ if and only if Ψ ` ψ.

Proof. Induction on structural complexity of formula ψ.
The base cases are given in Lemma 1 and Lemma 2. �

The statement of Theorem 3 follows from Lemma 3 and
the assumption φ /∈ Ψ. �

Corollary 1 The Logic of Secrets is decidable.

Proof. This logic has a finite axiomatization and is complete
with respect to the semantics of finite sets. �

Semantics of Secrets: Completeness
In this section, we prove that the Logic of Secrets is com-
plete with respect to the semantics of secrets.

Theorem 4 If P � φ for every finite protocol P , then ` φ.

Proof. Assume that 0 φ. By Theorem 3, there is a set se-
mantics S = 〈X, τ〉 such that S 2 φ. We will define a
protocol P = 〈D,R〉 such that P 2 φ. First, for any se-
cret a, let D(a) be the set of all boolean functions on τ(a).
Second, let R be the set of all functions r such that for all
secret variables a and b and for any x ∈ τ(a) ∩ τ(b), we
have r(a)(x) = r(b)(x).

Lemma 4 S � a ‖ b if and only if P � a ‖ b.
Proof. (⇒) : Assume S � a ‖ b. Thus, τ(a) ∩ τ(b) = ∅.
Consider any two runs r1 and r2 of protocol P . We will
show that there is a run r ∈ R such that r(a)(x) = r1(a)(x)



for any x ∈ τ(a) and r(b)(x) = r2(b)(x) for any x ∈ τ(b).
Indeed, consider function

r(s)(x) =
{
r1(s)(x) if x ∈ τ(a),
r2(s)(x) if x /∈ τ(a).

First, we will show that r ∈ R using a proof by con-
tradiction. Assume there are secret variables c and d and
y ∈ τ(c) ∩ τ(d) such that r(c)(y) 6= r(d)(y). Note that if
y /∈ τ(a), then r2(c)(y) = r(c)(y) 6= r(d)(y) = r2(d)(y).
Hence, r2 /∈ R. On the other hand, if y ∈ τ(a), then
r1(c)(y) = r(c)(y) 6= r(d)(y) = r1(d)(y). Hence, r1 /∈ R.

Next, notice that, by the definition of r, we have
r(a)(x) = r1(a)(x) for any x ∈ τ(a). We now only need to
show that r(b)(x) = r2(b)(x) for any x ∈ τ(b). Indeed, this
is true because τ(a) ∩ τ(b) = ∅.
(⇐) : Suppose that S 2 a ‖ b. Thus, there is x0 ∈ τ(a) ∩
τ(b). Consider two boolean functions r1 and r2 such that
r1(s)(x) = 0 for any x ∈ τ(s) and

r2(s)(x) =
{

1 if x = x0,
0 otherwise.

Note that if x ∈ τ(c) ∩ τ(d), then, by definition,
r1(c)(x) = r1(d)(x) and r2(c)(x) = r2(d)(x). Thus,
r1, r2 ∈ R. We will show that there is no such run r ∈ R
that r(a) = r1(a) and r(b) = r2(b). Indeed, r1(a)(x0) = 0
and r2(b)(x0) = 1. �

Lemma 5 S � aB b if and only if P � aB b.
Proof. (⇒) : Assume S � aB b. Thus, τ(a) ⊇ τ(b). Con-
sider any two runs r1, r2 ∈ R such that r1(a) = r2(a). We
will show that r1(b) = r2(b). In other words, r1(b)(x) =
r2(b)(x) for any x ∈ τ(b). Since τ(a) ⊇ τ(b) and r1, r2 ∈
R, we have r1(b)(x) = r1(a)(x) = r2(a)(x) = r2(b)(x).
(⇐) : Suppose that S 2 a B b. Thus, there is x0 ∈
τ(b)\τ(a). Consider two boolean functions r1 and r2 such
that r1(s)(x) = 0 for any x ∈ τ(s) and

r2(s)(x) =
{

1 if x = x0,
0 otherwise.

As was shown in the proof of Lemma 4, r1, r2 ∈ R. At
the same time, by the definition, r1(a)(x) = 0 = r2(a)(x)
for any x ∈ τ(a) and r1(b)(x0) = 0 6= 1 = r2(b)(x0).
Therefore, P 2 aB b. �

Lemma 6 For any formula ψ that is only using secret vari-
ables from V , S � ψ if and only if P � ψ.

Proof. Induction on structural complexity of formula ψ.
The base case is given in Lemma 4 and Lemma 5. �

The statement of Theorem 4 follows from Lemma 6 and
the assumption that S 2 φ. �

Probabilistic Semantics
Recall (Kolmogorov 1933) that probability space as a triple
K = (Ω,S, µ) such that

1. Ω is a non-empty “sample” set,

2. S (“σ-algebra of events”) is a subset of 2Ω closed with
respect to complementation and countable unions,

3. µ (“probability”) is a measure on S such that µ(Ω) = 1.

Given any probability spaceK = (Ω,S, µ), we will use let-
ters A, B, C, . . . to denote subsets of S that are closed with
respect to complementation and countable unions. Such
subsets of S will also be referred to as σ-algebras.

Our goal is to describe a probabilistic semantics for our
logical system. In the spirit of Geiger, Paz, and Pearl (1991),
we interpret ‖ as an independence relation between two σ-
algebras:

Definition 6 For any two σ-algebras A and B, K � A ‖ B
if and only if

∀A ∈ A ∀B ∈ B (µ(A ∩B) = µ(A) · µ(B)).

For the symbol B we suggest the following probabilistic in-
terpretation:

Definition 7 K � ABB if and only if

∀B ∈ B ∃A ∈ A (µ(A4B) = 0),

where4 is the symmetric difference operation on sets.

Proposition 1 If K � A ‖ A, then µ(A) ∈ {0, 1} for any
A ∈ A.

Proof. By the definition of independence, µ(A) · µ(A) =
µ(A). Thus, µ(A) ∈ {0, 1}. �

Below, we prove the soundness of the Logic of Secrets
with respect to this probabilistic semantics.

Theorem 5 If ` φ, then K � φ for any K.

Proof. We will show the soundness of each of the six axioms
with respect to probabilistic semantics.
Reflexivity. We need to show that K � A B A for any σ-
algebra A. Indeed, for any A ∈ A consider B = A and note
that µ(A4B) = µ(A4A) = µ(∅) = 0.
Transitivity. Assume K � A B B and K � B B C. We
will show that K � A B C. Indeed, let C ∈ C. By the sec-
ond assumption, there is B ∈ B such that µ(B4C) = 0.
By the first assumption, there is set A ∈ A such that
µ(A4B) = 0. Using the definition of symmetric differ-
ence, A4C = (A \ C) ∪ (C \A) = (A \B \ C) ∪ ((A ∩
B) \C) ∪ (C \B \A) ∪ ((C ∩B) \A) ⊆ (A \B) ∪ (B \
C)∪ (C \B)∪ (B \A) = (A4B)∪ (B4C). Therefore,
µ(A4C) ≤ µ(A4B) + µ(B4C) = 0 + 0 = 0.
Symmetry. Note that µ(A ∩ B) = µ(B ∩ A) and µ(A) ·
µ(B) = µ(B) · µ(A). Therefore, K � A ‖ B if and only if
K � B ‖ A.
Universal Independence. Suppose that K  A ‖ A. By
Proposition 1, µ(A) ∈ {0, 1} for any A ∈ A. Consider any
A ∈ A, B ∈ B.

If µ(A) = 1, then µ(Ā) = 0. Thus, µ(B \ A) = 0.
Therefore, µ(A ∩ B) = µ(B) − µ(B \ A) = µ(B) =
1 · µ(B) = µ(A) · µ(B).



If µ(A) = 0, then µ(A ∩ B) ≤ µ(A) = 0. Thus, µ(A ∩
B) = 0. Therefore, µ(A∩B) = 0 = 0·µ(B) = µ(A)·µ(B).
Universal Dependence. Suppose that K  A ‖ A. By
Proposition 1, µ(A) ∈ {0, 1} for any A ∈ A. Consider
any A ∈ A.

If µ(A) = 0, then let B = ∅ ∈ B. Thus, µ(A4B) ≤
µ(A∪B) ≤ µ(A)+µ(B) = 0+0 = 0. Hence, µ(A4B) =
0.

If µ(A) = 1, then let B = Ω ∈ B. Thus, µ(A4B) =
µ(A4Ω) = µ(Ω \A) = 1− µ(A) = 0.
Substitution. Assume K � A ‖ B and K � BBC. To show
K � A ‖ C, consider any A ∈ A and C ∈ C. By the second
assumption, there is B ∈ B, such that µ(B4C) = 0. By
the first assumption, µ(A ∩B) = µ(A) · µ(B).

First of all, note that µ(A ∩ B) − µ(A ∩ C) = µ((A ∩
B) \ C) ≤ µ(B \ C) ≤ µ(B4C) = 0 Similarly, µ(A ∩
C)− µ(A ∩B) ≤ 0. Thus, µ(A ∩B) = µ(A ∩ C).

Second, observe that µ(A)µ(B) − µ(A)µ(C) =
µ(A)(µ(B)−µ(C)) ≤ µ(A)µ(B\C) ≤ µ(A)µ(B4A) =
µ(A) · 0 = 0. Similarly, µ(A)µ(C) − µ(A)µ(B) ≤ 0.
Hence, µ(A)µ(B) = µ(A)µ(C).

Therefore, µ(A ∩ C) = µ(A ∩ B) = µ(A)µ(B) =
µ(A)µ(C). �

Now, we turn to the proof that the Logic of Secrets is com-
plete with respect to probabilistic semantics.
Theorem 6 If K � φ for any K, then ` φ.
Proof. Assume 0 φ. By Theorem 3, there is a finite set
semantics S = 〈X, τ〉, such that S 2 φ. We will define
finite probability space K = (Ω,S, µ) as follows:

1. Ω = 2X (we will think about this set as set of all boolean
functions on X),

2. S is the σ-algebra of all subsets: S = 2Ω,
3. µ(A) = |A|/|Ω|, for any A ⊆ Ω.

For any Y = y1, . . . , yk ⊆ X and any propositional for-
mula ψ(p1, . . . , pk) we define the cylinder

CY (ψ) = {ω ∈ Ω | ψ(ω(y1), . . . , ω(yk))}
and the cylinder algebra

CY = {CY (ψ) | ψ(p1, . . . , pk) is a propositional formula}.
Lemma 7 CY is a σ-algebra.
Proof. Since Ω is finite, it will be sufficient to
prove that CY is closed with respect to complemen-
tation and union. Indeed, CY (ψ) = CY (¬ψ) and
CY (ψ) ∪ CY (χ) = CY (ψ ∨ χ). �

Lemma 8 µ(CY (ψ)) = 2−|Y | × |{b ∈ {0, 1}|Y | | ψ(b)}|.
Proof.

µ(CY (ψ)) =
|CY (ψ)|
|Ω|

=

=
2|X|−|Y | × |{b ∈ {0, 1}|Y | | ψ(b)}|

2|X|
.

�

Lemma 9 K � CY ‖ CZ if and only if Y ∩ Z = ∅.

Proof. (⇒) : Assume that x ∈ Y ∩ Z 6= ∅. Consider
C = {ω ∈ Ω | ω(x) = 1}. Note that C ∈ CY and C ∈ CZ .
At the same time, by Lemma 8,

µ(C) = 2−1 × |{b ∈ {0, 1}1 | b}| = 2−1 × 1 =
1
2
.

Thus, µ(C ∩ C) = µ(C) = 1/2 6= 1/4 = µ(C) · µ(C).
Therefore, K 2 CY ‖ CZ .
(⇐) : Suppose that Y ∩Z = ∅. Consider any CY (ψ) ∈ CY

and any CZ(χ) ∈ CZ . By Lemma 8,

µ(CY (ψ) ∩ CZ(χ)) = µ(CY ∪Z(ψ ∧ χ)) =

= 2−|Y ∪Z| × |{b ∈ {0, 1}|Y ∪Z| | ψ(b) ∧ χ(b)}| =
= 2−|Y | × |{b ∈ {0, 1}|Y | | ψ(b)}| ×
×2−|Z| × |{b ∈ {0, 1}|Z| | χ(b)}| =

= µ(CY (ψ))× µ(CZ(χ)).

�

Lemma 10 K � CY B CZ if and only if Y ⊇ Z.

Proof. (⇒) : Assume that x ∈ Z \ Y . Since Ω is finite and
µ is non-zero on any non-emty subset of Ω, µ(A4B) = 0
if and only if A = B. Thus, it will be sufficient to construct
a cylinder C such that C ∈ CZ , but C /∈ CY . Note that
C = {ω ∈ Ω | ω(x) = 1} is such a cylinder.
(⇐) : By the definition of cylinder algebra, Y ⊇ Z implies
that CY ⊇ CZ . Therefore, K � CY B CZ . �

Lemma 11 K � ψ if and only if S � ψ, for any ψ.

Proof. Induction on structural complexity of ψ. Base cases
follow from Lemma 9 and Lemma 10. �

A special case of Lemma 11 is ψ ≡ ¬φ. Thus, K 2 φ.
This completes proof of Theorem 6. �

Independence of Axioms
In this section, we will prove that each of the axioms in our
system is logically independent from the other axioms. This
is done by defining non-standard semantics for predicates ‖
and B.

Theorem 7 The Reflexivity Axiom is independent from the
other axioms.

Proof. Consider a semantics under which both a ‖ b and
aB b are always false. Then the Reflexivity Axiom is false.
However, the remaining axioms are trivially true. �

Theorem 8 The Transitivity Axiom is independent from the
other axioms.

Proof. Consider a semantics under which secret variables
are interpreted as integer numbers, relation a ‖ b is defined
to be always false and relation a B b is true if and only if
|a− b| ≤ 1. Note that formula a B b → (b B c → a B c)



is false if a = 1, b = 2, and c = 3. Thus, the Transitivity
Axiom is not valid for this semantics. However, it is easy to
see that the remaining axioms are valid for all integer values
of a and b. �

Theorem 9 The Symmetry Axiom is independent from the
other axioms.

Proof. Assume that a ‖ b is interpreted as the relation
a > b on integer numbers and aB b as relation ≥. Note that
formula a ‖ b → b ‖ a is false if a = 1 and b = 2. Hence,
the Symmetry Axiom is false under this semantics. The
remaining axioms, however, are true for all integer values
of a and b. �

Theorem 10 The Universal Independence Axiom is inde-
pendent from the other axioms.

Proof. Let a ‖ b be interpreted as the relation a = b = 0 on
the integers and a B b as the relation a = b ∨ b = 0. Then
a ‖ a→ a ‖ b is false and the remaining axioms are true. �

Theorem 11 The Universal Dependence Axiom is indepen-
dent from the other axioms.

Proof. Let a ‖ b be interpreted as the relation a = 0∨ b = 0
on integer numbers, and a B b as the relation a = b. Then
a ‖ a→ bB a is false and the remaining axioms are true. �

Theorem 12 The Substitution Axiom is independent from
the other axioms.

Proof. Suppose that a ‖ b is interpreted as the relation
a 6= b on integer numbers, and a B b is interpreted as
the relation a ≥ b. If a = c = 1 and b = 2, then
a ‖ b → (b B c → a ‖ c) is false. However, the remaining
axioms are trivially true for all values of a, b, and c. �

Conclusion: Dependencies Between Sets
In this paper, we have considered a logical system for inde-
pendence and functional dependence relations between sin-
gle secrets. This is a first step towards a more general in-
vestigation of the interaction of the two relations between
sets of secrets. The language of sets of secrets is more ex-
pressive than the language of single secrets, and is capable
of capturing deeper properties connecting the independence
and functional dependence relations. For example, below is
a non-trivial property relating the two predicates:

A,B ‖ C,D ∧ A,B,CBE ∧ B,C,DBE → B,CBE.

To justify this property, we first assume that for some pro-
tocol P = 〈D,R〉, we have P � A,B||C,D in addi-
tion to P � A,B,C B E and P � B,C,D B E. We
will use the notation r1 =S r2 to indicate that ∀s ∈ S,
r1(s) = r2(s), where r1 and r2 are runs and S is a set
of secrets. Next, suppose we have r1, r2 ∈ R such that
r1 =B,C r2. We must demonstrate that r1 =E r2. By the
assumption that P � A,B||C,D, there exists some r ∈ R

such that r =A,B r1 and r =C,D r2. Since r1 =B,C r2,
we have r =A,B,C r1 and r =B,C,D r2. Finally, using the
assumptions that P � A,B,C B E and P � B,C,D B E ,
we conclude that r1 =E r =E r2, as desired.

A sound and complete logical system in the setting of sets
of secrets would combine Armstrong’s axioms for functional
dependency listed in the introduction, and the axioms for in-
dependence of sets of secrets presented by More and Nau-
mov (2009a). Furthermore, the system would include addi-
tional statements connecting these two relations, including
the property presented above, as well as set-based versions
of the Universal Dependence and Substitution Axioms dis-
cussed in this paper:

A ‖ A→ (B B C → B BA,C),

A ‖ B → (B B C → A ‖ C).
A complete axiomatization of these properties remains an
open problem.
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