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Abstract. The paper considers interdependencies between secrets in a
multiparty system. Each secret is assumed to be known only to a certain
fixed set of parties. These sets can be viewed as edges of a hypergraph
whose vertices are the parties of the system. The main result is a complete
and decidable logical system that describes interdependencies that may
exist on a fixed hypergraph. The properties of interdependencies are
defined through a multi-argument relation called independence, which is
a generalization of a binary relation also known as nondeducibility.

1 Introduction

In this paper, we study properties of interdependencies between pieces of infor-
mation. We call these pieces secrets to emphasize the fact that they might be
known to some parties and unknown to others. Below, we first describe two re-
lations for expressing interdependencies between secrets. Next, we discuss these
relations in the context of collaboration networks which specify the available
communication channels for the parties establishing the secrets.

Relations on Secrets. One of the simplest relations between two secrets is
functional dependence, which we denote by aBb. It means that the value of secret
a reveals the value of secret b. This relation is reflexive and transitive. A more
general and less trivial form of functional dependence is functional dependence
between sets of secrets. If A and B are two sets of secrets, then A B B means
that, together, the values of all secrets in A reveal the values of all secrets in B.
Armstrong [1] presented a sound and complete set of axioms for this relation.

These axioms are known in database literature as Armstrong’s axioms [2,
p. 81]. Beeri, Fagin, and Howard [3] suggested a variation of Armstrong’s axioms
that describe properties of multi-valued dependency.

Not all dependencies between two secrets are functional. For example, if se-
cret a is a pair 〈x, y〉 and secret b is a pair 〈y, z〉, then there is an interdependence
between these secrets in the sense that not every value of secret a is compatible
with every value of secret b. However, neither aB b nor bB a is necessarily true.
If there is no interdependence at all between two secrets, then we will say that
the two secrets are independent. In other words, secrets a and b are indepen-
dent if any possible value of secret a is compatible with any possible value of



secret b. We denote this relation between two secrets by [a, b]. This relation was
introduced by Sutherland [4] and is also known as nondeducibility in the study
of information flow. Halpern and O’Neill [5] proposed a closely related notion
called f -secrecy.

Like functional dependence, independence also can be generalized to relate
two sets of secrets. If A and B are two such sets, then [A,B] means that any con-
sistent combination of values of the secrets in A is compatible with any consistent
combination of values of the secrets in B. Note that “consistent combination”
is an important condition here, since some interdependence may exist between
secrets in set A even while the entire set of secrets A is independent from the
secrets in set B. The following is an example of a non-trivial property expressible
in this language:

[A∪B , C] → ([A , B] → [A , B∪C]).

A sound and complete axiomatization of all such properties was given by More
and Naumov [6]. Essentially the same axioms were shown by Geiger, Paz, and
Pearl [7] to provide a complete axiomatization of the independence relation be-
tween sets of random variables in probability theory. A complete logical system
that combines independence and functional dependence predicates for single se-
crets was described by Kelvey, More, Naumov, and Sapp [8].
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Fig. 1. Collaboration network H0.

Secrets in Networks. So
far, we have assumed that the
values of secrets are deter-
mined a priori. In the physi-
cal world, however, secret val-
ues are often generated, or
at least disseminated, via in-
teraction between several par-
ties. Quite often such interactions happen over a network with fixed topology.
For example, in social networks, interaction between nodes happens along con-
nections formed by friendship, kinship, financial relationship, etc. In distributed
computer systems, interaction happens over computer networks. Exchange of
genetic information happens along the edges of the genealogical tree. Corporate
secrets normally flow over an organization chart. In cryptographic protocols, it is
often assumed that values are transmitted over well-defined channels. On social
networking websites, information is shared between “friends”. Messages between
objects on an UML interaction diagram are sent along connections defined by
associations between the classes of the objects.

In this paper, we will use the notion of collaboration network to refer to the
topological structure that specifies which secrets are known to which parties.
An example of such network is given on Figure 1. In this network, parties p, q
and r share secret a; parties r and s share secrets b and c; and parties s, t and
u share secret d. If different secrets are established completely independently,
then possession of one or several of these secrets reveals no information about



the other secrets. Assume, however, that secrets are not picked completely inde-
pendently. Instead, each party with access to multiple secrets may enforce some
desired interdependence between the values of these secrets. These “local” inter-
dependencies between secrets known to a single party may result in a “global”
interdependence between several secrets, not all of which are known to any sin-
gle party. Given the fixed topology of the collaboration network, we study what
global interdependencies between secrets may exist in the system.

We will say that the local interdependencies define a protocol. For the col-
laboration network H0 depicted in Figure 1, for example, we can imagine the
following protocol. Parties p, q and r together pick a random value a from set
{0, 1}. Next, party r chooses values b and c from {0, 1} in such a way that
a = b + c mod 2 and sends both of these values to party s. Party s computes
d = b + c mod 2 and shares value d with parties t and u. In this protocol, it
is clear that the values of a and d will always match. Hence, for this specific
protocol, we can say that aB d and dB a, but at the same time, [a, b] and [a, c].

The functional dependence and independence examples above are for a single
protocol, subject to a particular set of local interdependencies between secrets. If
the network remains fixed, but the protocol is changed, then secrets which were
previously interdependent may no longer be so, and vice versa. For example,
for network H0 above, the claim a B d will no longer be true if, say, party s
switches from enforcing the local condition d = b + c mod 2 to enforcing the
local condition d = b. In this paper, we study properties of relations between
secrets that follow from the topological structure of the collaboration network, no
matter which specific protocol is used. Examples of such properties for network
H0 are aB d→ b, cB d and [{a}, {b, c}] → [a, d].

A special case of the collaboration network is an undirected graph collabo-
ration network in which any secret is shared between at most two parties. In an
earlier work [9], we considered this special case and gave a complete axiomatic
system for the independence relation between single secrets in that setting. In
fact, we axiomatized a slightly more general relation [a1, a2, . . . , an] between mul-
tiple single secrets, which means that any possible values of secrets a1, . . . , an

can occur together.

In a more recent work, currently under review, we developed a complete
logical system that describes the properties of the functional dependence relation
A B B between sets of secrets over graph collaboration networks. This system
includes Armstrong’s axioms and a new Gateway axiom that captures properties
of functional dependence specific to the topology of the collaboration network.

In the current paper, we focus on independence and generalize our results
from collaboration networks defined by standard graphs to those defined by
hypergraphs. That is, we examine networks where, as in Figure 1, a secret can
be shared between more than two parties. In this setting, we give a complete
and decidable system of axioms for the relation [a1, a2, . . . , an]. In terms of the
proof of completeness, the most significant difference between the earlier work
[9] and this one is in the construction of the parity protocol in Section 7.1.



2 Hypergraphs

A collaboration network where a single secret can be shared between multiple
parties can be described mathematically as a hypergraph in which vertices are
parties and (hyper)edges are secrets. In this section, we will introduce the hy-
pergraph terminology that is used later in the paper.

Definition 1. A hypergraph is pair H = 〈V,E〉, where

1. V is a finite set, whose elements are called “vertices”.
2. E is a finite multiset of non-empty subsets of V . Elements of E are called

“edges”. Elements of an edge are called the “ends” of the edge.

Note that we use “mulitisets” in the above definition to allow for multiple edges
between the same set of ends. Also note that, as is common in hypergraph
literature [10, p. 1], we exclude empty edges from consideration.

Definition 2. For any set of vertices V ′ of a hypergraph H, by Out(V ′) we mean
the set of edges in H that contain ends from both set V ′ and the complement of
V ′. By In(V ′) we mean the set of edges in H that contain only ends from V ′.

From the collaboration network perspective, V ′ is a group of parties, Out(V ′)
is the public interface of this group (secrets that the group members share with
non-members) and In(V ′) is the set of secrets only known within group V ′. For
example, for the collaboration network defined by hypergraph H0 on Figure 1,
if V ′ = {r, s}, then Out(V ′) = {a, d} and In(V ′) = {b, c}.

A path in a hypergraph is an alternating sequence of edges and vertices in
which adjacent elements are incident. It will be convenient to assume that paths
start and end with edges rather than with vertices. Paths will be assumed to
be simple, in the sense that no edge or vertex is repeated in the path, with the
exception that the last edge in the path may be the same as the first. In this
case, the path is called cyclic. For example, a, r, b, s, c is a path in H0 of Figure 1.

Definition 3. A gateway between sets of edges A and B is a set of edges G such
that every path from A to B contains at least one edge from G.

For instance, set {b, c} is a gateway between single-element sets {a} and {d} on
the hypergraph H0 from Figure 1. Note also that in the definition above, sets
A, B, and G are not necessarily disjoint. Thus, for example, for any set of edges
A, set A is a gateway between A and itself. Also, note that the empty set is a
gateway between any two components of the hypergraph that are not connected
one to another.

Definition 4. If X is an arbitrary set of vertices of a hypergraph H = 〈V,E〉,
then the truncation of set X from H is a hypergraph H ′ = 〈V \X,E′〉, where

E′ = {e \X | e ∈ E and e \X 6= ∅}.

Truncated hypergraph H ′ is also commonly [10, p. 3] referred to as the subhy-
pergraph of H induced by the set of vertices V \X.



3 Protocol: A Formal Definition

Definition 5. A semi-protocol over a hypergraph H = 〈V,E〉 is a pair P =
〈V al, Loc〉 such that

1. V al(e) is an arbitrary set of “values” for each edge e ∈ E,
2. Loc = {Locv}v∈V is a family of relations, indexed by vertices (parties) of

the hypergraph H, which we call “local conditions”. If e1, . . . ek is the list of
all edges incident with vertex v, then Locv ⊆ V al(e1)× · · · × V al(ek).

Definition 6. A run of a semi-protocol 〈V al, Loc〉 is a function r such that

1. r(e) ∈ V al(e) for any edge e ∈ E,
2. If e1, . . . ek is the list of all edges incident with vertex v ∈ V , then the state-

ment Locv(r(e1), . . . , r(ek)) is true.

Definition 7. A protocol is any semi-protocol that has at least one run.

The set of all runs of a protocol P is denoted by R(P).

Definition 8. A protocol P = 〈V al, Loc〉 is called finite if the set V al(e) is
finite for every edge e of the hypergraph.

The following definition of independence is identical to the one given ear-
lier [9] for standard graphs.

Definition 9. A set of edges Q = {q1, . . . , qk} is independent under protocol P
if for any runs r1, . . . , rk ∈ R(P) there is a run r ∈ R(P) such that r(qi) = ri(qi)
for any i ∈ {1, . . . , k}.

4 Language of Secrets

By Φ(H), we denote the set of all collaboration network properties specified by
hypergraph H that are expressible through the independence predicate. More
formally, Φ(H) is a minimal set of formulas defined recursively as follows: (i)
for any finite subset A of the set of edges of hypergraph H, formula [A] is in
Φ(H), (ii) the false constant ⊥ is in set Φ(H), and (iii) for any formulas φ
and ψ ∈ Φ(H), the implication φ → ψ is in Φ(H). As usual, we assume that
conjunction, disjunction, and negation are defined through → and ⊥.

Next, we define a relation � between a protocol and a formula from Φ(H).
Informally, P � φ means that formula φ is true under protocol P.

Definition 10. For any protocol P over a hypergraph H, and any formula φ ∈
Φ(H), we define the relation P � φ recursively as follows:

1. P 2 ⊥,
2. P � [A] if the set of edges A is independent under protocol P,
3. P � φ1 → φ2 if P 2 φ1 or P � φ2.



In this paper, we study the formulas φ ∈ Φ(H) that are true under any protocol
P over a fixed hypergraph H. Below we describe a formal logical system for such
formulas. This system, like earlier systems defined by Armstrong [1], More and
Naumov [11, 9] and by Kelvey, More, Naumov, and Sapp [8], belongs to the set
of deductive systems that capture properties of secrets. In general, we refer to
such systems as logics of secrets. Since this paper is focused on only one such
system, here we call it the logic of secrets of hypergraph H.

5 Logic of Secrets

In this section we will define a formal deductive system for the logic of secrets
and give examples of proofs in this system. The soundness, completeness, and
decidability of this system will be shown in the next two sections.

5.1 Formal System: Axioms and Rules

For any hypergraph H = 〈V,E〉, we will write H ` φ to state that formula
φ ∈ Φ(H) is provable in the logic of secrets of hypergraph H. The deductive
system for this logic, in addition to propositional tautologies and Modus Ponens
inference rule, consists of the Small Set axiom, the Gateway axiom, and the
Truncation inference rule, defined below:
Small Set Axiom. H ` [A], where A ⊆ E and |A| < 2.
Gateway Axiom. H ` [A,G] → ([B] → [A,B]), where G is a gateway between
sets of edges A and B such that A ∩G = ∅.
Truncation Rule. If H ′ ` φ, then H ` [Out(X)] → φ, where H ′ is obtained
from H by the truncation of set X.

The soundness of this system will be demonstrated in Section 6.

Theorem 1 (monotonicity). H ` [A] → [B], for any hypergraph H and any
subset B of a set of edges A of hypergraph H.

Proof. Consider sets B and ∅. Since there are no paths connecting these sets, any
set of edges is a gateway between these sets. In particular A\B is such a gateway.
Taking into account that sets B and A \B are disjoint, by the Gateway axiom,
H ` [B,A \ B] → ([∅] → [B]). By the Small Set axiom, H ` [B,A \ B] → [B].
By assumption B ⊆ A, we get H ` [A] → [B]. ut

5.2 Proof Examples
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Fig. 2. Hypergraph H1.

Our first example refers to hyper-
graph H1 in Figure 2. It shows par-
ties p and q that have secrets a and
c, respectively, that they do not share
with each other, and secret b that they
both know.



Theorem 2. H1 ` [a, b] → [a, c].

Proof. Set {b} is a gateway between sets {a} and {c}. Thus, by the Gateway
axiom, H1 ` [a, b] → ([c] → [a, c]). At the same time, H1 ` [c], by the Small Set
axiom. Therefore, H1 ` [a, b] → [a, c]. ut
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Fig. 3. Hypergraph H2.

Our second example deals with the collabora-
tion network defined by hypergraph H2 on Fig-
ure 3. Here, parties p, q, and r have individual
secrets a, b, c, and together share secret d.

Theorem 3. H2 ` [a, d] → ([b, d] → [a, b, c]).

Proof. Note that set {d} is a gateway between sets
{a} and {b, d}. Thus, by the Gateway axiom,

H2 ` [a, d] → ([b, d] → [a, b, d]). (1)

Next, observe that set {d} is a gateway between sets {a, b} and {c}. Thus,
by the Gateway axiom, H2 ` [a, b, d] → ([c] → [a, b, c]). By the Small Set axiom,
H2 ` [c]. Hence,

H2 ` [a, b, d] → [a, b, c]. (2)

From statements (1) and (2), it follows that H2 ` [a, d] → ([b, d] → [a, b, c]). ut

Our third and final example refers to hypergraph H3 depicted in Figure 4. In
the proof we will also refer to hypergraph H ′

3, shown in the same figure, which
is the result of the truncation of set {q, r, u, v} from hypergraph H3.
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Fig. 4. Hypergraphs H3 (left) and H ′
3 (right).

Theorem 4. H3 ` [b, d, g, e] → [a, f ].

Proof. Note that in the truncated hypergraph H ′
3, the empty set is a gateway

between the single element sets {a} and {f}. Thus, by the Gateway axiom,
H ′

3 ` [a] → ([f ] → [a, f ]). By the Small Set axiom, H ′
3 ` [a] and H ′

3 ` [f ].
Hence, H ′

3 ` [a, f ]. By the Truncation rule, H3 ` [Out(q, r, u, v)] → [a, f ]. Since
Out(q, r, u, v) = {b, d, g, e}, we get H3 ` [b, d, g, e] → [a, f ]. ut



6 Soundness

The proof of soundness, particularly for the Gateway axiom and Truncation rule,
is non-trivial. For each axiom and inference rule, we provide its justification as
a separate theorem.

Theorem 5 (Small Set). For any hypergraph H = 〈V,E〉 and any set of edges
A that has at most one element, if P is an arbitrary protocol over H, then
P � [A].

Proof. If A = ∅, then P � [A] follows from the existence of at least one run of
any protocol (see Definition 7). If A = {a1}, consider any run r1 ∈ R(P). Pick
r to be r1. This guarantees that r(a1) = r1(a1). ut

Theorem 6 (Gateway). For any hypergraph H = 〈V,E〉, and any gateway G
between sets of edges A and B, if P � [A,G], P � [B], and A ∩ G = ∅, then
P � [A,B].

Proof. Assume P � [A,G], P � [B], and A ∩ G = ∅. Let A = {a1, . . . , an} and
B = {b1, . . . , bk}. Consider any r1, . . . , rn+k. It will be sufficient to show that
there is r ∈ R(P) such that r(ai) = ri(ai) for any i ≤ n and r(bi) = rn+i(bi) for
any i ≤ k. By the assumption P � [B], there is rb ∈ R(P) such that

rb(bi) = rn+i(bi) for any i ≤ k. (3)

By the assumptions P � [A,G] and A∩G = ∅, there must be a run ra such that

ra(c) =
{
ri(c) if c = ai for i ≤ n,
rb(c) if c ∈ G. (4)

Next, consider hypergraph H ′ = 〈V,E \ G〉. By the definition of a gateway, no
single connected component of hypergraph H ′ can contain edges from set A and
set B \G at the same time. Let us divide all connected components of H ′ into
two subhypergraphs H ′

a and H ′
b such that H ′

a contains no edges from B \G and
H ′

b contains no edges from A. Components that do not contain edges from either
A or B \G can be arbitrarily assigned to either H ′

a or H ′
b.

By definition (4), runs ra and rb agree on each edge of the gateway G. We
will now construct a combined run r by “sewing” together portions of ra and rb
with the “stitches” placed along gateway G. Formally,

r(c) =

 ra(c) if c ∈ Ha,
ra(c) = rb(c) if c ∈ G,
rb(c) if c ∈ Hb.

(5)

Let us first prove that r is a valid run of the protocol P. For this, we need
to prove that it satisfies local conditions Locv at every vertex v. Without loss of
generality, assume that v ∈ H ′

a. Hence, on all edges incident with v, run r agrees
with run ra. Thus, run r satisfies Locv simply because ra does.



Next, we will show that r(ai) = ri(ai) for any i ≤ n. Indeed, by equations
(4) and (5), r(ai) = ra(ai) = ri(ai). Finally, we will need to show that r(bi) =
rn+i(bi) for any i ≤ k. This, however, trivially follows from equation (3) and
equation (5). ut

Theorem 7 (Truncation). Assume that hypergraph H ′ is obtained from H by
the truncation of set X and that φ ∈ Φ(H ′). If P ′ � φ for any protocol P ′ over
hypergraph H ′, then P � [Out(X)] → φ for any protocol P over hypergraph H.

Proof. Suppose that there is a protocol P over H such that P � [Out(X)], but
P 2 φ. We will construct a protocol P ′ over H ′ such that P ′ 2 φ.

Let P = 〈V al, Loc〉. Note that, for any edge e, not all values from V al(e)
may actually be used in the runs of this protocol. Some values could be excluded
by the particular local conditions of P. To construct protocol P ′ = 〈V al′, Loc′〉
over hypergraph H ′, for any edge e of H ′ we define V al′(e) as the set of values
that are actually used by at least one run of the protocol P:

V al′(e) = {r(e) | r ∈ R(P)}.

The local condition Loc′v at any vertex v of hypergraph H ′ is the same as under
protocol P. To show that protocol P ′ has at least one run, notice that the
restriction of any run of P to edges in H ′ constitutes a valid run of P ′.

Lemma 1. For any run r′ ∈ R(P ′) there is a run r ∈ R(P) such that r(e) =
r′(e) for each edge e in hypergraph H ′.

Proof. Consider any run r′ ∈ R(P ′). By definition of V al′, for any e ∈ Out(X)
there is a run re ∈ R(P) such that r′(e) = re(e). Since P � [Out(X)], there is a
run rX ∈ R(P) such that rX(e) = re(e) = r′(e) for any e ∈ Out(X).

We will now construct a combined run r ∈ R(P) by “sewing” together rX
and r′ with the “stitches” placed in set Out(X). Formally,

r(e) =

 rX(e) if e ∈ In(X),
rX(e) = r′(e) if e ∈ Out(X),
r′(e) otherwise.

We just need to show that r satisfies Locv at every vertex v of hypergraph H.
Indeed, if v ∈ X, then run r is equal to rX on all edges incident with v. Thus,
it satisfies the local condition because run rX does. Alternatively, if v /∈ X,
then run r is equal to run r′ on all edges incident with v. Since r′ satisfies local
condition Loc′v and, by definition, Loc′v ≡ Locv, we can conclude that r again
satisfies condition Locv.

Lemma 2. P � [Q] if and only if P ′ � [Q], for any set of edges Q in H ′.

Proof. Assume first that P � [Q] and consider any runs r′1, . . . , r
′
n ∈ R(P ′). We

will construct a run r′ ∈ R(P ′) such that r′(qi) = r′i(qi) for every i ∈ {1, . . . , n}.
Indeed, by Lemma 1, there are runs r1, . . . , rn ∈ R(P) that match runs r′1, . . . , r

′
n



on all edges inH ′. By the assumption that P � [Q], there must be a run r ∈ R(P)
such that r(qi) = ri(qi) for all i ∈ {1, . . . , n}. Hence, r(qi) = ri(qi) = r′i(qi) for
all i ∈ {1, . . . , n}. Let r′ be a restriction of run r to the edges in H ′. Since the
local conditions of protocols P and P ′ are the same, r′ ∈ R(P ′). Finally, we
notice that r′(qi) = r(qi) = r′i(qi) for any i ∈ {1, . . . , k}.

Next, assume that P ′ � [Q] and consider any runs r1, . . . , rn ∈ R(P). We will
show that there is a run r ∈ R(P) such that r(qi) = ri(qi) for all i ∈ {1, . . . , n}.
Indeed, let r′1, . . . , r

′
n be the restrictions of runs r1, . . . , rn to the edges in H ′.

Since the local conditions of these two protocols are the same, r′1, . . . , r
′
n ∈ R(P ′).

By the assumption that P ′ � [Q], there is a run r′ ∈ R(P ′) such that r′(qi) =
r′i(qi) = ri(qi) for all i ∈ {1, . . . , n}. By Lemma 1, there is a run r ∈ R(P)
that matches r′ everywhere in H ′. Therefore, r(qi) = r′(qi) = ri(qi) for all
i ∈ {1, . . . , n}.

Lemma 3. For any formula ψ ∈ Φ(H ′), P � ψ if and only if P ′ � ψ.

Proof. We use induction on the complexity of ψ. The base case follows from
Lemma 2, and the induction step is trivial.

The statement of Theorem 7 immediately follows from Lemma 3. ut

7 Completeness

Our main result is the following completeness theorem for the logic of secrets:

Theorem 8. For any hypergraph H, if P � φ for all finite protocols P over H,
then H ` φ.

We prove this theorem by contrapositive. At the core of this proof is the construc-
tion of a finite protocol. This protocol will be formed as a composition of several
simpler protocols, where each of the simpler protocols is defined recursively. The
base case of this recursive definition comes from the family of “parity” protocols
{PA}A defined below.

7.1 Parity Protocol PA

b

c

q sp r

t v w
g

d

e
u

a f
1

0 1

1 1

0

0 0

0

01

1

0 0

1 1

Fig. 5. Parity protocol run on graph H3.

Let H = 〈V,E〉 be a hypergraph and
A be a subset of E. We define the
“parity protocol” PA over H as fol-
lows. The set of values of any edge e in
hypergraph H is {0, 1}e, or the set of
boolean functions on e. Thus, a run r
of the protocol will be a function that
maps an edge into a function from the
ends of this edge into boolean values:
r(e)(v) ∈ {0, 1}, where e is an edge



and v is an end of e. It will be more convenient, however, to think about a run
as a two-argument function r(e, v) ∈ {0, 1}. We will graphically represent this
function by placing boolean values at each end of each edge of the hypergraph.
See Figure 5 for an example.

Not all assignments of boolean values to the ends of an edge e will be permit-
ted in the parity protocol. Namely, if e /∈ A, then the sum of all values assigned
to the ends of e must be equal to zero modulo 2:∑

v∈e

r(e, v) = 0 mod 2. (6)

However, if e ∈ A, then no restriction on the assignment of boolean values to
the ends of e will be imposed. This defines the set of values V al(e) for each edge
e under the protocol PA.

The second restriction on the runs will require that the sum of all values
assigned to ends incident with any vertex v is also equal to zero modulo 2:∑

e∈E(v)

r(e, v) = 0 mod 2, (7)

where E(v) is the set of all edges incident with v. The latter restriction specifies
the local condition Locv for each vertex v. The protocol PA is now completely
defined. We just need to prove the existence of at least one run that satisfies all
local conditions. Indeed, consider the run r such that r(e, v) = 0 for any end v
of any edge e. This run clearly satisfies restrictions (6) and (7).

Theorem 9. For any run r of the parity protocol PA,∑
e∈A

∑
v∈e

r(e, v) = 0 mod 2.

Proof. Let H = 〈V,E〉. Using equations (7) and (6),

∑
e∈A

∑
v∈e

r(e, v) =
∑
e∈E

∑
v∈e

r(e, v)−
∑
e/∈A

∑
v∈e

r(e, v) =

=
∑
v∈V

∑
e∈E(v)

r(e, v)−
∑
e/∈A

0 =
∑
v∈V

0− 0 = 0 mod 2. ut

Recall that we defined a path to start and end with edges rather than vertices.

Definition 11. For any path π = e0, v1, e1, . . . , en in a hypergraph H and any
run r of the parity protocol PA, we define rπ as

rπ(e, v) =
{

1− r(e, v) if e = ei, v = vi+1 or v = vi, e = ei+1 for some i < n,
r(e, v) otherwise.
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Fig. 6. Run rπ.

Informally, rπ is obtained from
r by “flipping” the boolean value
at each end along path π. For
example, Figure 6 depicts the
“flipped” run rπ, where π is
a, t, g, u, c, v, e, w, f , and run r is
the run from Figure 5. The edges
along path π are indicated with
dashed lines in Figure 6.

Theorem 10. For any r ∈ PA and any path π in a hypergraph H, if π is a
cycle or starts and ends with edges that belong to set A, then rπ ∈ R(PA).

Proof. Run rπ satisfies condition (6) because rπ is different from r at exactly
two ends of any non-terminal edge of path π. The same run rπ satisfies condition
(7) at every vertex v of the hypergraph, because path π includes either zero or
two ends of edges incident at vertex v. ut

Theorem 11. If |A| > 1 and hypergraph H is connected, then for any e ∈ A
and any g ∈ {0, 1} there is a run r ∈ R(PA) such that

∑
v∈e r(e, v) = g mod 2.

Proof. Each protocol has at least one run. Let r be a run of the protocol PA.
Suppose that

∑
v∈e r(e, v) 6= g mod 2. Since |A| > 1 and hypergraph H is

connected, there is a path π that connects edge e with an edge a ∈ A such that
a 6= e. Notice that

∑
v∈e rπ(e, v) =

∑
v∈e r(e, v) + 1 = g mod 2. ut

Theorem 12. If |A| > 1 and hypergraph H is connected, then PA 2 [A].

Proof. Let A = {a1, . . . , ak}. Pick any boolean values g1, . . . , gk such that g1 +
· · · + gk = 1 mod 2. By Theorem 11, there are runs r1, . . . , rk ∈ R(PA) such
that

∑
v∈ai

ri(ai, v) = gi mod 2 for any i ≤ k. If PA � [A], then there is a run
r ∈ R(PA) such that r(ai, v) = ri(ai, v) for any v ∈ ai and any i ≤ k. Therefore,∑

v∈a1
r(a1, v)+ · · ·+

∑
v∈ak

r(ak, v) =
∑

v∈a1
r1(a1, v)+ · · ·+

∑
v∈ak

rk(ak, v) =
g1 + · · ·+ gk = 1 mod 2. This contradicts Theorem 9. ut

Theorem 13. If A and B are two sets of edges of a hypergraph H = 〈V,E〉,
such that each connected component of hypergraph 〈V,E \ B〉 contains at least
one edge from A, then PA � [B].

Proof. Let B = {b1, . . . , bk}. Consider any runs r1, . . . , rk ∈ R(PA). We will
prove that there is a run r ∈ R(PA) such that r(bi, v) = ri(bi, v) for any v ∈ bi
and any i ≤ k. Indeed, protocol PA has at least one run. Call it r̂. We will modify
run r̂ to satisfy the condition r̂(bi, v) = ri(bi, v) for any v ∈ bi and any i ≤ k.
Our modification will consist of repeating the following procedure for each i ≤ k
and each v ∈ bi such that r̂(bi, v) 6= ri(bi, v):

1. If bi ∈ A, then, by the assumption of the theorem, there must be a path
e0, v1, e1, v2, e2 . . . , en in the hypergraph 〈V,E \ B〉 such that e0 ∈ A, and



v ∈ en. Consider path π = e0, v1, e1, v2, e2 . . . , en, v, bi in hypergraph H. By
Theorem 10, r̂π ∈ R(PA). Note also that r̂π(bj , u) = r̂(bj , u) for all j and
all u ∈ bj with the exception of j = i and u = v. In the case that j = i and
u = v, we have r̂π(bj , u) = 1− r̂(bj , u) = ri(bi, u). Pick r̂π to be the new r̂.

2. If bi /∈ A, then, by (6),∑
v∈bi

r̂(bi, v) = 0 =
∑
v∈bi

ri(bi, v) mod 2.

At the same time, by our assumption, r̂(bi, v) 6= ri(bi, v). Thus there must
be u ∈ bi such that u 6= v and r̂(bi, u) 6= ri(bi, u). Note that vertices u and
v could belong either to the same connected component or to two different
connected components of hypergraph 〈V,E \B〉. We will consider these two
subcases separately.
(a) Suppose u and v belong to the same connected component of hypergraph

〈V,E \ B〉. Thus, there must be a path π′ in that hypergraph which
connects an edge containing vertex u with an edge containing v. Consider
now a cyclic path in hypergraph H = 〈V,E〉 that starts at edge bi, via
vertex u get on the path π′, goes through the whole path π′, and via
vertex v gets back to bi. Call this cyclic path π.

(b) Suppose u and v belong to different connected components of hypergraph
〈V,E\B〉. Thus, by the assumption of the theorem, hypergraph 〈V,E\B〉
contains a path πu = au, . . . , eu that connects an edge au ∈ A with an
edge eu containing end u. By the same assumption, hypergraph 〈V,E\B〉
must also contain a path πv = ev, . . . , av that connects an edge ev,
containing end v, with an edge av ∈ A. Let π = πu, u, bi, v, πv.

By Theorem 10, r̂π ∈ R(PA). Note also that r̂π(bj , w) = r̂(bj , w) for all j
and all w ∈ bj with the exception of j = i and w ∈ {u, v}. In the case that
j = i and w ∈ {u, v}, we have r̂π(bj , w) = 1 − r̂(bj , w) = ri(bi, w). Pick r̂π
to be the new r̂.

Let r be r̂ with all the modifications described above. These modifications guar-
antee that r(bi) = r̂(bi, v) = ri(bi, v) for any v ∈ bi and any i ≤ k. ut

7.2 Generalized Parity Protocol

In this section, we will generalize the parity protocol through a recursive con-
struction. First, however, we will need to establish the following technical result.

Theorem 14 (protocol extension). Let H = 〈V,E〉 be any hypergraph, X be
a set of vertices in H and H ′ = 〈V ′, E′〉 be the result of the truncation of X
from H. For any finite protocol P ′ on H ′, there is a finite protocol P on H such
that P � [Q] if and only if P ′ � [Q ∩ E′], for any set Q ⊆ E.

Proof. To define protocol P, we need to specify a set of values V al(c) for each
edge c ∈ E and the set of local conditions Locv for each vertex v in hypergraphH.
If c ∈ E′, then let V al(c) be the same as in protocol P ′. Otherwise, V al(c) = {ε},



where ε is an arbitrary element. The local conditions for vertices in V \ X are
the same as in protocol P ′, and the local conditions for vertices not in X are
equal to the boolean constant True. This completes the definition of P. Clearly,
P has at least one run r0 since protocol P ′ has a run.

(⇒) : Suppose that Q ∩ E′ = {q1, . . . , qk}. Consider any r′1, . . . , r
′
k ∈ R(P ′).

Define runs r1, . . . , rk as follows, for any c ∈ E:

ri(c) =
{
r′i(c) if c ∈ E′,
ε if c /∈ E′.

Note that runs ri and r′i, by definition, are equal on any edge incident with
any vertex in hypergraph H ′. Thus, ri satisfies the local conditions at any such
vertex. Hence, ri ∈ R(P) for any i ∈ {1, . . . , k}. Since P � [Q], there is a run
r ∈ R(P) such that

ri(c) =
{
ri(c) if c ∈ Q ∩ E′,
r0(c) if c ∈ Q \ E′.

Define r′ to be a restriction of r on hypergraph H ′. Note that r′ satisfies all local
conditions of P ′. Thus, r′ ∈ R(P ′). At the same time, r′(qi) = ri(qi) = r′i(qi) for
each qi ∈ Q ∩ E′.

(⇐) : Suppose that Q = {q1, . . . , qk}. Consider any r1, . . . , rk ∈ R(P), and
let r′1, . . . , r

′
k be their respective restrictions to hypergraph H ′. Since, for any

i ∈ {1, . . . , k}, run r′i satisfies the local conditions of P ′ at any node of hypergraph
H ′, we can conclude that r′1, . . . , r

′
k ∈ R(P ′). By the assumption that P ′ �

[Q ∩ E′], there is a run r′ ∈ R(P ′) such that r′(q) = r′i(q) for any q ∈ Q ∩ E′.
In addition, r′(q) = ε = r′i(q) for any q ∈ Q\E′. Hence, r′(qi) = r′i(qi) for any
i ∈ {1, . . . , k}. Define run r as follows:

r(c) =
{
r′(c) if c ∈ E′,
ε if c /∈ E′.

Note that r satisfies the local conditions of P at all nodes. Thus, r ∈ R(P). In
addition, r(qi) = r′(qi) = r′i(qi) for all qi ∈ Q. ut

We will now prove the key theorem in our construction. The proof of this
theorem recursively defines a generalization of the parity protocol.

Theorem 15. For any hypergraph H = 〈V,E〉 and any sets A,B1, . . . , Bn ⊆ E,
if H 0

∧
1≤i≤n[Bi] → [A], then there is a finite protocol P over H such that

P 2 [A] and P � [Bi] for all i ≤ n.

Proof. Induction on the size of V .
Case 1. If |A| ≤ 1, then, by the Small Set axiom, H ` [A]. Hence, H `∧

1≤i≤n[Bi] → [A], which is a contradiction.
Case 2. Suppose that the edges of hypergraph H can be divided into two non-
trivial disconnected sets X and Y . Thus, the empty set is a gateway between
A ∩X and A ∩ Y . By the Gateway axiom,

H ` [A ∩X] → ([A ∩ Y ] → [A]).



Thus, taking into account the assumption H 0
∧

1≤i≤n[Bi] → [A], either

H 0
∧

1≤i≤n

[Bi] → [A ∩X]

or
H 0

∧
1≤i≤n

[Bi] → [A ∩ Y ].

Without loss of generality, we will assume the former. By Theorem 1,

H 0
∧

1≤i≤n

[Bi ∩X] → [A ∩X].

By the Small Set axiom,

H 0 [∅] → (
∧

1≤i≤n

[Bi ∩X] → [A ∩X]).

Consider the set VY of all vertices in component Y . Let H ′ be the result of the
truncation of graph H that removes VY from H. Note that Out(VY ) = ∅, since
sets X and Y are disconnected. Thus, by the Truncation rule,

H ′ 0
∧

1≤i≤n

[Bi ∩X] → [A ∩X].

By the Induction Hypothesis, there is a protocol P ′ on H ′ such that P ′ 2 [A∩X]
and P ′ � [Bi ∩X], for any i ≤ n. Therefore, by Theorem 14, there is a protocol
P on H such that P 2 [A] and P � [Bi] for any i ≤ n.
Case 3. Suppose there is i0 ∈ {1, . . . , n} such that at least one connected com-
ponent of hypergraph 〈V,E \Bi0〉 does not contain an element of A. We will call
this connected component Y . Let VY be the set of all vertices in this component.
Note that Out(VY ) is a gateway between In(VY ) and the complement of In(VY ).
Hence, Out(VY ) is also a gateway between A∩In(VY ) and A\In(VY ). Therefore,
by the Gateway axiom, taking into account that In(VY ) ∩Out(VY ) = ∅,

H ` [A ∩ In(VY ), Out(VY )] → ([A \ In(VY ))] → [A]). (8)

Recall now that by the assumption of this case, component Y of graph 〈V,E\Bi0〉
does not contain any elements of A. Hence, A ∩ In(VY ) ⊆ Bi0 . At the same
time, Out(VY ) ⊆ Bi0 by the definition of set VY . Thus, from statement (8) and
Theorem 1,

H ` [Bi0 ] → ([A \ In(VY ))] → [A]). (9)

By the assumption of the theorem,

H 0
∧

1≤i≤n

[Bi] → [A]. (10)



From statements (9) and (10),

H 0
∧

1≤i≤n

[Bi] → [A \ In(VY )].

By the laws of propositional logic,

H 0 [Bi0 ] → (
∧

1≤i≤n

[Bi] → [A \ In(VY )]).

Since Out(VY ) ⊆ Bi0 , by Theorem 1,

H 0 [Out(VY )] → (
∧

1≤i≤n

[Bi] → [A \ In(VY )]).

Again by Theorem 1,

H 0 [Out(VY )] → (
∧

1≤i≤n

[Bi \ In(VY )] → [A \ In(VY )]).

Let H ′ be the result of the truncation of set VY from hypergraph H. By the
Truncation rule,

H ′ 0
∧

1≤i≤n

[Bi \ In(VY )] → [A \ In(VY )].

By the Induction Hypothesis, there is a protocol P ′ on H ′ such that P ′ 2
[A \ In(VY )] and P ′ � [Bi \ In(VY )] for any i ≤ n. Therefore, by Theorem 14,
there is a protocol P on H such that P 2 [A] and P � [Bi] for any i ≤ n.
Case 4. Assume now that (i) |A| > 1, (ii) hypergraph H is connected, and (iii)
for any i ∈ {1, . . . , n}, each connected component of hypergraph 〈V,E \ Bi0〉
contains at least one element of A. Consider the parity protocol PA over H. By
Theorem 12, PA 2 [A]. By Theorem 13, PA � [Bi] for any i ∈ {1, . . . , n}. ut

7.3 Completeness: final steps

Theorem 16. For any n ≥ 0 and any finite protocols P1, . . . ,Pn over a hyper-
graph H there is a finite protocol P over H such that for any set of edges Q of
this hypergraph, P � [Q] if and only if Pi � [Q] for any i ≤ n.

Proof. First, consider the case where n = 0. Pick any symbol ε and define P to
be 〈V al, Loc〉 such that V al(c) = {ε} for any c ∈ E, and local condition Locv to
be the constant True at every vertex v. By Definition 9, P � [C] for any C ⊆ E.

We will now assume that n > 0 and define the composition of protocols
P1, . . . ,Pn. Informally, composition is the result of several protocols run over
the same hypergraph without any interaction between the protocols. Formally,
suppose that P1 = 〈V al1, Loc1〉, . . . ,Pn = 〈V aln, Locn〉 and define protocol
P = 〈V al, Loc〉 as follows:



1. V al(c) = V al1(c)× · · · × V aln(c),
2. Locv(〈c11, . . . , cn1 〉, . . . , 〈c1k, . . . , cnk 〉) =

∧
1≤i≤n Loc

i
v(ci1, . . . , c

i
k),

To show that P is a protocol, we need to show that it has at least one run. Let
r1, . . . , rn be runs of P1, . . . ,Pn. Define r(c) to be 〈r1(c), . . . , rn(c)〉. It is easy to
see that r satisfies the local conditions Locv for any vertex v of the hypergraph
H. Thus, r ∈ R(P).

We will use notation {r(c)}i to denote the ith component of the value of r(c).

Lemma 4. For any set of edges Q,

P � [Q] if and only if ∀i (Pi � [Q]).

Proof. Let Q = {q1, . . . , q`}.

(⇒) : Assume P � [Q] and pick any i0 ∈ {1, . . . , n}. We will show that Pi0 � [Q].
Pick any runs r′1, . . . , r

′
` ∈ R(Pi0). For each i ∈ {1, . . . , i0−1, i0+1, . . . , n}, select

an arbitrary run ri ∈ R(Pi). We then define a series of composed runs rj for
j ∈ {1, . . . , `} by

rj(c) = 〈r1(c), . . . , ri0−1(c), r′j(c), r
i0+1(c), . . . , rn(c)〉,

for each edge c ∈ E. Since the component parts of each rj belong in their
respective sets R(Pi), the composed runs are themselves members of R(P). By
our assumption, P � [Q], thus there is r ∈ R(P) such that r(qi) = ri(qi) for
any i0 ∈ {1, . . . , `}. Finally, we consider the run r∗, where r∗(c) = {r(c)}i0

for each c ∈ E. That is, we let the value of r∗ on c be the io-th component
of r(c). By definition of composition, r∗ ∈ R(Pi0), and it matches the original
r′1, . . . , r

′
` ∈ R(Pi0) on edges q1, . . . , q`, respectively. Hence, we have shown that

Pi0 � [Q].

(⇐) : Assume ∀i (Pi � [Q]). We will show that P � [Q]. Pick any runs r1, . . . , r` ∈
R(P). For each i ∈ {1, . . . , n}, each j ∈ {1, . . . , `}, and each edge c, let ri

j(c) =
{rj(c)}i. That is, for each c, define a run ri

j whose value on edge c equals the ith
component of rj(c). Note that by the definition of composition, for each i and
each j, ri

j is a run in R(Pi). Next, for each i ∈ {1, . . . , n}, we use the fact that
Pi � [Q] to construct a run ri ∈ R(Pi) such that ri(qj) = ri

j(qj). Finally, we
compose these n runs r1, . . . , rn to get run r ∈ R(P). We note that the value of
each edge qj on r matches the the value of qj in run rj ∈ R(P), demonstrating
that P � [Q]. ut

This concludes the proof of Theorem 16. ut

We are now ready to prove Theorem 8.

Proof. We give a proof by contradiction. Let X be a maximal consistent set of
formulas from Φ(H) that contains ¬φ. Let {A1, . . . , An} = {A ⊆ E | [A] /∈ X}
and {B1, . . . , Bk} = {B ⊆ E | [B] ∈ X}. Thus, H 0

∧
1≤j≤k[Bj ] → [Ai], for any

i ≤ n, due to the consistency of X. We will construct a protocol P such that
P 2 [Ai] for any i ≤ n and P � [Bj ] for any j ≤ k.



By Theorem 15, there are finite protocols P1, . . . ,Pn such that Pi 2 [Ai] and
Pi � [Bj ] for all i ≤ n and j ≤ k. By Theorem 16, there is a protocol P such
that P 2 [Ai] for any i ≤ n and P � [Bj ] for any j ≤ k.

By induction on structural complexity of any formula ψ ∈ Φ(H), one can
show now that P � ψ if and only if ψ ∈ X. Thus, P � ¬φ. Therefore, P 2 φ. ut

Corollary 1. The set {(H,φ) | H ` φ} is decidable.

Proof. The complement of this set is recursively enumerable due to the com-
pleteness of the system with respect to finite protocols. ut
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