
On meta complexity of propositional formulas

and propositional proofs

Pavel Naumov
Department of Mathematics

and Computer Science
McDaniel College

Westminster, MD 21157

pnaumov@mcdaniel.edu

March 4, 2008

Abstract

A new approach to defining complexity of propositional formulas and
proofs is suggested. Instead of measuring the size of these syntactical
structures in the propositional language, the article suggests to define the
complexity by the size of external descriptions of such constructions. The
main result is a lower bound on proof complexity with respect to this new
definition of complexity.

1 Introduction

Propositional proof complexity is concerned with asymptotic analysis of the
minimal proof size as a function of the tautology size. The details of this analysis
depend on the three major factors: the logical formalism that is used, the
definition of the proof size, and the definition of the formula size. A variety of
formalisms has been previously considered; among them are Frege and extended
Frege [1], limited-depth Frege [9, 7], resolution [3], and cutting plane systems
[2]. Two major ways to measure the size of a propositional proof is to count the
number of symbols and the number of steps in the proof. The most popular way
to measure a formula size is to count the number of symbols in this formula.
Clearly, alternative definitions of the formula size are possible. For example,
formula size could be defined through minimal size of binary decision diagram
(“BDD”) representing the formula. Nevertheless, such definitions are hardly
used.

1

1.1 Tautology descriptions

The mentioned above measurements of tautologies and proofs sizes are based
on the internal descriptions of such objects in the propositional logic. These de-
scriptions, in turn, depend on the choice of syntactical primitives in the propo-
sitional language. If these primitives are changed, the size of the formula could
change as well. For example, consider propositional pigeonhole principle:∧

i≤n

∨
j<n

pi,j →
∨
i1 6=i2

∨
j

(pi1,j ∧ pi2,j). (1)

Traditionally, multi-argument symbols
∧

and
∨

are viewed as meta abbrevia-
tions for multiple applications of binary conjunctions and disjunctions. In this
case, the size of the formula (1) is O(n3). Yet, if we modify propositional lan-
guage to include symbols

∧
and

∨
, then the size of formula (1) becomes O(log n)

– the number of digits required to write number n.
It is worth pointing out that although the tradition to use binary logical con-

nectives has a long history, its main justification is probably the Boole’s desire
to present propositional logic in the algebraic form. Putting algebraic connec-
tion aside, there is no internal logical reason to restrict ourselves by binary and
unary syntactical primitives. In fact it is quite common in practice to introduce
non-standard notations to describe complex boolean expression just like we did
in formula (1). Use of BDDs to describe complex propositional formulas in
computer-based model checking is another example of turning to non-standard
logical notations to shorten a representation of a boolean expression.

To make the notion of the tautology size less dependent on the particular
choice of syntactical primitives we can instead use the notion of tautology com-
plexity which would be defined as the shortest description of the tautology in
a certain class of notations. The most “robust” of these classes of notations is,
probably, the approach under which tautology is denoted by a minimal Turing
Machine that can generate this tautology. This, essentially, is Kolmogorov com-
plexity applied to the domain of propositional formulas. It is a valid approach to
formula complexity, but it does not make sense in the proof complexity, where
we study dependency of the proof size on the tautology size. Indeed, by in-
corporating a side computation in the Turing machine describing tautology, we
can easily achieve the result when it would be very hard to prove the tautology
generated by the Turing machine. For example, for any recursive function f(n)
we can define Turing Machine TMf that on any input n looks at all proposi-
tional proofs of size no more than f(n) and finds minimal m such that tautology
>m ≡ > ∧ · · · ∧ > is not proven by any of these proofs. The Turing machine
TMf then returns tautology >m as output. Kolmogorov complexity of such
tautology is determined by the size of description of n which is in O(log n), yet
the minimal size of the proof of this tautology is at least f(n).

Another approach to defining the class of compact notations for proposi-
tional formulas is suggested by Kraj́ıček in his work on implicit proofs [5, 4, 6].
Essentially, he restricts Turing machines to digital circuits in the above defini-
tion. To be more specific, the digital circuit outputs consecutive fragments of

2

binary formula description on the standard enumeration of all possible binary
inputs. The complexity of a boolean formula is defined to be the minimal size
of a digital circuit that generates it. This is an interesting approach from the
computer science prospective and because of its obvious connection to digital
circuit complexity.

In this article we develop another class of notations for boolean formulas
that we call boolean recursions. These notations meant to generalize multi-
argument conjunction and disjunction mentioned above. Namely, we notice that
these multi-argument connectives could be defined recursively. For example,
propositional formula

∨n
i=1 pi could be defined by recursion over parameter n

as follows:
n+1∨
i=1

pi = (
n∨
i=1

pi) ∨ pn+1,

0∨
i=1

pi = ⊥.

Such recursion together with the specific value of n could be use to described
formula

∨n
i=1 pi. The size of this description is O(log n) because recursion de-

scription has a constant size and only O(log n) symbols are needed to specify the
value of the parameter n, if standard binary notations for integers are used. In
Section 2.3, we will give a more detailed definition of boolean recursions that we
will use to describe propositional formulas. We will keep our presentation gen-
eral enough to allow representations of integers possibly different from standard
binary notations.

1.2 Meta proof

One can view boolean recursions as a new and very powerful primitive syn-
tactical construction that we add to the propositional language. Yet, another
approach is to view boolean recursions as “meta” descriptions of traditional
propositional formulas. We use the word “meta” to stress the fact that the de-
scription is given outside of the standard propositional language. If our goal is
to compare tautology complexity to its proof complexity, then one would expect
a similar measure of proof complexity through the size of its meta description
to be introduced.

What could be viewed as a proper “meta” description of the proof? Our
informal answer to this question is: whatever a mathematician will write on the
blackboard when faced with a task of presenting a propositional proof. Let us
see how this informal answer can be translated into a formal one. We will start
with a discussion of two extreme alternatives.

According to one of them, a meta description of a proof is simply a sequence
of the meta descriptions of the formulas, where the formulas form a proof in the
traditional sense. This approach “compresses” each formula in the proof, but
leaves the number of proof steps unchanged. Although reasonable, this approach
leads to a very weak notion of meta proof. For example, if a propositional proof
is using formulas φ1, . . . , φn that could be obtained one from another by re-
arranging arguments of conjunctions, one would want the meta proof to be able

3

to make this observation and not to re-prove each of these formulas separately.
Our current meta proofs will not be able to do that.

The other extreme is based on Kolmogorov complexity. We could simply
say that proof described by a Turing machine that outputs the proof. This
approach has two major flaws. First, mathematicians hardly would accept a
proof-generating algorithm as a “meta proof” without a justification that this
algorithm terminates and produces a valid proof. Second, exhaustive search
algorithm satisfies this definition of the meta proof, thus trivializing the notion
of proof complexity. Kraj́ıček’s notion of implicit proof is an attempt to fix these
flaws by replacing Turing machines with digital circuits and requiring to include
into the implicit proof a propositional proof of correctness for such circuit (see
[5]).

In this work we want to propose a formal notion of meta proof that could
be viewed as an alternative to implicit proofs. Namely, consider any meta
theory capable of formalizing and reasoning about the syntax of propositional
logic. To keep the presentation simple, we will assume that meta theory is
Peano Arithmetic (PA). Let Taut(x) be a Gödel-style provability predicate for
propositional logic. Informally, Taut(pφq) is an arithmetical formula that states
that “proposition φ is provable in the propositional logic”. By meta proof of
proposition φ we will mean a proof of Taut(pφq) in PA. One might criticize this
definition of meta proofs for not being constructive. Indeed, we only establish
existence of the proof without giving any instructions on how to construct such
a proof. Our objection to this critique is that once the existence of the proof
is established, the proof itself could be found through an exhaustive search
algorithm, which now would be guaranteed to terminate.

1.3 Proof complexity

Size of an arithmetical proof is the total number of symbols in the proof. By
meta complexity of a propositional proof we will mean the minimal size of
an arithmetical proof of existence of such a propositional proof. In the other
words, proof complexity of proposition φ is just the minimal size of the proof of
Taut(pφq) in PA.

The arithmetical predicate Taut(x) could be written for different proposi-
tional systems, such as Frege, extended Frege, resolution, etc. Clearly, all such
predicates are provably equivalent in PA. Thus, the introduced notion of meta
proof complexity is system-independent modulo O(1). This contrasts with the
traditional notion of proof complexity that varies from one propositional system
to another. Of course, meta proof complexity might, in turn, depend on the
first-order formalization of PA, but one can easily see that the main results of
this paper do not depend on the particular choice of formalism used for PA.

The main result of this article, Theorem 1, is a lower bound on meta proof
complexity. In case when standard binary notations are used for integers this
lower bound is super polynomial (see Corollary 1). That is, for any polynomial
p(n) there is a propositional tautology φ that could be defined through a boolean
recursion of size n such that Taut(pφq) has no PA proofs of size no larger than

4

p(n).
It should be pointed out that this new, more syntax-independent, approach

to measuring formula and proof complexity is induced by the interest to pure
proof complexity, not its applications to computational complexity. Application
of the presented here results to computational complexity appears to be a hard
task especially because meta complexity approach modifies not only the way
complexity of proofs is measured but it also modifies the way formula size is
defined. At the same time, by measuring propositional proof complexity by
the size of PA proofs, meta proof complexity builds a bridge that connects
propositional proof complexity with the first order proof complexity [8].

1.4 Proof Idea

To prove Theorem 1, we need to construct a propositional tautology that has
no short proofs. We construct this tautology by finding a way to write a propo-
sitional formula that essentially says I have no short proofs. It is easy to see
that such formula can not be false, but, if true, it can not have short proofs.

2 Formal Setting of the Problem

2.1 Binary Representation of Formulas

We assume that the alphabet of the propositional language consists of paren-
theses, boolean connectives, propositional variables p0, p1, . . . , and comma sign.
Let τ be an arbitrary mapping of the symbols in this alphabet into binary
strings. We assume that this mapping is naturally extended to a function from
words in this alphabet to binary strings. The exact choice of translation τ is not
important, but we assume that it is fixed throughout this article and satisfies
the following properties:

1. The translation of each symbol starts with 1.

2. The translation is an injective function from words into binary strings.

3. For an arbitrary propositional variable pn, translation τ(pn) is αβγ, where
binary strings α and γ do not depend on the value of parameter n and β
is a representation of integer n in binary (base two) numerical system.

Definition 1 Size |φ| of a propositional formula φ is the length of string τ(φ).
Size |π| of a propositional proof π is the length of string τ(π).

Lemma 1
|pn| ∈ O(log n).

Proof. See condition 3 above. �
We also will consider a mapping θ of the symbols in the first-order language
of Peano Arithmetic into binary strings. This mapping, just like τ , could be

5

extended to a mapping from words in the arithmetical language into binary
strings. Throughout this article mapping θ is also assumed to be fixed and
satisfying conditions 1 and 2 above. Although condition 3 could be modified
from one on propositional variables into a one on first-order variables, the results
presented in this paper do not require translation θ to satisfy condition 3.

Definition 2 Size |φ| of a first order formula φ is the length of string θ(φ).
Size |π| of a arithmetical proof π is the length of string θ(π).

2.2 Meta Proof Complexity

By Gödel numbers people usually mean a way to assign a unique integer number
to each arithmetical formula. Ordinarily, the exact way this assignment is done
is not important as long as there is a set of primitive-recursive functions on
integer numbers that correspond to syntactical operations on formulas. Here
we are going to deal with sizes of arithmetical formulas, so we would like to
adopt a system of Gödel numbers in which sizes of these numbers could be easily
determined based on the size of the formulas. For this purpose, we assume that
Gödel number pφq of any arithmetical formula φ is the integer whose binary
representation is θ(φ). Note that θ(φ) could be interpreted as a number in binary
notations because, by condition 1 above, binary string τ(φ) always starts with
1. It is important to observe that Gödel number of an arithmetical formula φ
uses exactly |φ| binary digits. Hence, the size of an arithmetical formula with
Gödel number x is blog xc+ 1. Therefore,

Lemma 2 Size of an arithmetical formula φ is blog(pφq)c+ 1. �

Bear in mind, however, that standard formalization of Peano Arithmetic does
not use binary numerals. Instead, it provides two atomic numerals: 0 and 1, and
the other numerals should be specified as terms. If d1d2d3 . . . dn is an integer
number in binary notations, then it can be written as an arithmetical term

((d1 × (1 + 1) + d2)× (1 + 1) + d3)× (1 + 1) + · · ·+ dn.

The size of this term is O(n). Assuming such encoding of binary numbers, we
could assert

Lemma 3 For any given arithmetical formula P (x),

|P (pφq)| ∈ O(|φ|).

Proof. By Lemma 2, |P (pφq)| ∈ O(log(pφq)) = O(|φ|). �
Let Pr(x) be the Gödel provability predicate for Peano Arithmetic built using
the described above Gödel numbers. That is, Pr(pφq) is an arithmetical state-
ment that claims that arithmetical formula φ is provable in Peano Arithmetic.

Lemma 4 There is a monotonic polynomial p1(n) such that |Pr(pαq)| ≤ p1(|α|)
for any arithmetical formula α.

6

Proof. By Lemma 3, polynomial p1(n) can be chosen to be a linear function. �

We will also consider a variation of the provability predicate, bounded prov-
ability predicate, Prn(pφq) that claims that arithmetical formula φ has a proof
π in Peano Arithmetic such that |π| ≤ n. In addition, we will introduce Gödel-
like numbering of propositional formulas in such a way that for any propositional
formula φ, its Gödel number pφq is the integer whose binary (in the numerical
system with base two) representation is τ(φ). Propositional provability predi-
cate Taut(pφq) is an arithmetical statement that claims that propositional for-
mula φ is provable in propositional logic. Finally, we will use notation PA `n φ
to say that arithmetical formula φ has a proof π in Peano Arithmetic such that
|π| ≤ n.

Definition 3 Meta proof complexity ||φ||PA of a propositional formula φ is the
minimal size of a proof of the statement Taut(pφq) in Peano Arithmetic.

2.3 Boolean Recursions

Let α and β(q, r) be propositional formulas (boolean expressions), and q and r
be two different propositional variables that occur in β. A single one-parameter
boolean recursion is a formalism that we suggest for specifying an infinite se-
quence of boolean expressions b[0], b[1], b[2], . . . that could be informally defined
as α, β(α, p0), β(β(α, p0), p1), . . . , where p0, p1, p2, . . . is the list of all proposi-
tional variables. More formally, it can be specified as{

b[n+ 1] = β(b[n]/q, pn/r),
b[0] = α.

(2)

An example of such sequence is b[n] =
∧i<n
i=0 pi, it can be defined by the following

boolean recursion: {
b[n+ 1] = b[n] ∧ pn,
b[0] = >.

In this example, α = > and β(q, r) = q ∧ r.
In a more general case, we will allow simultaneous recursion over two pa-

rameters:
b[n+ 1,m+ 1] = δ(b[n+ 1,m]/q1, b[n,m+ 1]/q2, b[n,m]/q3, pn/r1, pm/r2),
b[n+ 1, 0] = γ(b[n, 0]/q, pn/r),
b[0,m+ 1] = β(b[0,m]/q, pm/r),
b[0, 0] = α.

Technically, two-parameter boolean recursion is formally defined by specifying
four boolean expressions: α, β(q, r), γ(q, r), and δ(q1, q2, q3, r1, r2) that cor-
respond to four different recursion cases. Generally speaking, we will allow
boolean recursions with arbitrary number of parameters b[n1, . . . , nl].

7

We will also allow systems of boolean recursions. For example, a system of
two single-parameter recursions has the form

{
a[n+ 1] = β(a[n]/q1, b[n]/q2, pn/r),
a[0] = α,{
b[n+ 1] = δ(a[n]/q1, b[n]/q2, pn/r),
b[0] = γ.

In this paper, by a system of boolean recursions R we mean a finite system of
boolean recursions such that each recursion in the system has a finite number
of arguments. Informally, the size |R| of system R is the number of symbols in
the (finite) description of the system. Formally, system R is a finite sequence
of equalities, by the size |R| of system R we mean the total number of symbols
in all these equalities. Let b[n1, n2, . . . , nl] be one of the recursions specified by
system R. Any particular boolean expression in this recursion can be described
by systemR, name of recursion b and values of integer parameters n1, n2, . . . , nl.
By |b[n1, n2, . . . , nl]|R we mean the size of such a description.

We will assume that “the standard” way to describe an integer is using
binary (based two) notations. However, to state our main result in a more
general form, we will allow for non-standard descriptions. For example, one can
describe integer by an arithmetical expression, by an expression that includes
exponential functions, etc. Let decode : {0, 1}∗ → Z be an arbitrary injective
function from binary strings of arbitrary length into integers. We define

e(l) = max{decode(s) : length(s) = l}.

It will be assumed throughout the rest of the paper that function e(l) could be
defined in Peano Arithmetic. That is, there is an arithmetical formula φ(x, y)
such that e(x) = y if and only if φ(x, y). Also, we assume that E(l) is a binary
string such that length(decode(E(l))) = e(l). By |n| we will mean the length of
the shortest string s such that decode(s) = n. Note that for standard encoding
of integer numbers (in binary notations), we have e(l) = 2l − 1.

Lemma 5 For any system of boolean recursions R and any boolean expression
b[n1, n2, . . . , nm] defined by system R,

|b[n1, n2, . . . , nm]|R = O(|R|+ |n1|+ · · ·+ |nm|).

Finally, if formula φ is a boolean combination

α(b1[n1
1, n

1
2, . . . , n

1
l], b[n

2
1, n

2
2, . . . , n

2
l], . . . , b[n

m
1 , n

m
2 , . . . , n

m
l])

of formulas b1[n1
1, n

1
2, . . . , n

1
l], b[n

2
1, n

2
2, . . . , n

2
l], . . . , b[n

m
1 , n

m
2 , . . . , n

m
l] defined by

a system of boolean recursions R, then by |φ|R we will mean

|α|+
m∑
i=1

|b[ni1, ni2, . . . , nil]|R.

8

2.4 The Main Result

In this section we state an upper lower bounds on meta proof complexity.

Definition 4 For any two functions f, g : N → N, we say that function g
polynomially dominates function f if for any two polynomials p(x) and q(x)
there is N ∈ N such that for any n > N ,

p(f(q(n))) < g(n).

We will use notation f ≺ g to state that function g polynomially dominates
function f . Here are some trivial examples of polynomial domination: x ≺ 2x,
2x ≺ 22x

, 22x ≺ 222x

, etc.
Recall that above we have defined function e.

Theorem 1 For any function f such that f ≺ e there is a propositional tau-
tology b[n1, n2, . . . , nm] defined by a system of boolean recursions R such that

||b[n1, n2, . . . , nm]||PA > f(|b[n1, n2, . . . , nm]|R).

Corollary 1 If standard binary notations are used to represent integers, then
for any polynomial p there is a propositional tautology b[n1, n2, . . . , nm] defined
by a system of boolean recursions R such that

||b[n1, n2, . . . , nm]||PA > p(|b[n1, n2, . . . , nm]|R).

The rest of the article is dedicated to the proof of Theorem 1.

3 Boolean Encoding of Arithmetical Proofs

Let p0, p1, p2, . . . be variables in the propositional language. Every valuation ∗
can be uniquely identified with an infinite binary sequence p∗0, p

∗
1, p
∗
2, Our

goal for this section is to write a system of boolean recursions R that defines
a propositional formula ∆α

n that says that p∗0, . . . , p
∗
e(n)−1 is not a translation

of an arithmetical proof of statement α. The existence of such a propositional
formula is not surprising. We just should be careful enough to garantee that
|∆α

n|R is sufficiently small. We start with several primitives that later will be
used to define system R and formula ∆α

n.

3.1 Index Arithmetic

Definition 5 Let the propositional formula eq[i, j] be defined by the following
boolean recursion: 

eq[0, 0] = >,
eq[0, j + 1] = ⊥,
eq[i+ 1, 0] = ⊥,
eq[i+ 1, j + 1] = eq[i, j].

(3)

9

Thus, for any non-negative integers i and j, formula the eq[i, j] is a variable-free
propositional formula. Depending on the values of i and j it is equal to either
⊥ or >.

Lemma 6 For any non-negative integers i and j, the propositional formula
eq[i, j] is true if and only if i = j. �

Definition 6 Let the propositional formula less[i, j] be defined by the following
boolean recursion: 

less[0, 0] = ⊥,
less[0, j + 1] = >,
less[i+ 1, 0] = ⊥,
less[i+ 1, j + 1] = less[i, j].

(4)

Lemma 7 For any non-negative integers i and j, the propositional formula
less[i, j] is true if and only if i < j. �

Definition 7 Let the propositional formula addeq[i, j, k] be defined by the fol-
lowing boolean recursion:

addeq[0, 0, 0] = >,
addeq[0, 0, k + 1] = ⊥,
addeq[0, j + 1, 0] = ⊥,
addeq[0, j + 1, k + 1] = eq[j, k],
addeq[i+ 1, 0, 0] = ⊥,
addeq[i+ 1, 0, k + 1] = eq[i, k],
addeq[i+ 1, j + 1, 0] = ⊥,
addeq[i+ 1, j + 1, k + 1] = addeq[i+ 1, j, k].

(5)

Lemma 8 For any non-negative integers i, j, and k, the propositional formula
addeq[i, j, k] is true if and only if i+ j = k. �

Definition 8 Let the propositional formula prev[i, j] be defined by the following
boolean recursion: 

prev[0, 0] = ⊥,
prev[0, j + 1] = eq[0, j],
prev[i+ 1, 0] = ⊥,
prev[i+ 1, j + 1] = prev[i, j].

(6)

Lemma 9 For any non-negative integers i and j, the propositional formula
prev[i, j] is true if and only if i+ 1 = j. �

3.2 Bounded Quantifier

Definition 9 For an arbitrary propositional formula φ(i), with an integer pa-
rameter i, and an arbitrary non-negative integer n we define propositional for-
mula

∨n
i=0 φ(i), with parameter n, by a boolean recursion as following:{ ∨0

i=0 φ(i) = ⊥,∨n+1
i=0 φ(i) = φ(n) ∨

∨n
i=0 φ(i).

(7)

10

Lemma 10 For any propositional formula φ(i) with an integer parameter i,
any non-negative integer n, and any valuation ∗, formula (

∨n
i=0 φ(i))∗ is true if

and only if there is an integer i such that 0 ≤ i < n and (φ(i))∗ is true. �

Note that propositional formula φ(i) is a parameter in the expression
∨n
i=0 φ(i)

in the sense that Definition 9 defines different formula
∨n
i=0 φ(i) for each propo-

sitional formula φ(i). Sometimes, we will use
∨

inside of another definition. For
example, we might write

b[n] =
n∨
i=0

α(b[i]).

Formally, this expression should be interpreted as the boolean recursion{
b[0] = ⊥,
b[n+ 1] = α(b[n]) ∨ b[n].

We will also encounter slightly more complicated definitions involving
∨

. These
will have the form

b[n] = β(
n∨
i=0

α(b[i])).

To write this definition as a boolean recursion, we introduce an auxiliary formula
a[n] =

∨n
i=0 α(b[i]), which can be defined through a boolean recursion as follows:{

a[0] = ⊥,
a[n+ 1] = α(β(a[n])) ∨ β(a[n]).

Formula b[n] should be viewed now just as an abbreviated notation for β(a[n]).
The use of nested instances of

∨
can be interpreted similarly by introduction

of a new recursively defined boolean formula for every nested instance of
∨

.

Definition 10 For any non-negative integers i, j, i′, and j′,

subeqsub[i, j, i′, j′] =
j∨

∆=0

(addeq[i,∆, j] ∧ addeq[i′,∆, j′]).

Lemma 11 For any non-negative integers i, j, i′, j′, the propositional formula
subeqsub[i, j, i′, j′] is true if and only if i ≤ j, i′ ≤ j′, and j − i = j′ − i′. �

3.3 Segments

Definition 11 For any boolean string β = b0b2 . . . bk−1, let boolean expression
PATTERNβ [i, j] be

j∨
m1=0

j∨
m2=0

· · ·
j∨

mk−1=0

prev[i,m1] ∧ prev[m1,m2] ∧ · · · ∧ prev[mk−1, j]∧

∧(pi ↔ b0) ∧ (pm1 ↔ b1) ∧ · · · ∧ (pmk−1 ↔ bk−1).

11

Note that the boolean string β is a meta-parameter of formula PATTERNβ [i, j]
in the sense that the above definition specifies a separate boolean expression for
each boolean string β. The size of this expression increases as a function of the
length of string β.

Lemma 12 For any boolean string β = b0b1 . . . bk−1, any non-negative inte-
gers i and j, and any valuation of propositional variables ∗, boolean expres-
sion PATTERNβ [i, j] is true if and only true if j + k = i, p∗j = b0, p

∗
j+1 =

b1, . . . , p
∗
j+(k−1) = bk−1. �

Definition 12

segeqseg[i, j, i′, j′] = subeqsub[i, j, i′, j′] ∧

¬
j∨

x=0

j′∨
x′=0

¬(subeqsub[i, x, i′, x′]→ (p[x]↔ p[x′])).

Lemma 13 For any non-negative integers i, j, i′, j′, the propositional formula
segeqseg[i, j, i′, j′] is true if and only if i ≤ j, i′ ≤ j′, and the binary string
p∗i , p

∗
i+1, . . . , p

∗
j−1 is equal to the string p∗i′ , p

∗
i′+1, . . . , p

∗
j′−1. �

3.4 First-Order Syntax

Next, we will use the defined above primitives to recursively define boolean ex-
presions V ariable[k, n], Term[k, n], Atom[k, n], and Formula[k, n] that state
that the binary string p∗k, . . . , p

∗
n−1 is a θ-translation of an atomic predicate

formula, a variable, and a predicate formula correspondingly. Below, we explic-
itly define a somewhat more complex expression Formula[k, n], the other two
expressions can be defined in a similar fashion.

Definition 13 For any two non-negative integers n and k,

Formula[k, n] = Atom[k, n] ∨

(less[k, n] ∧
n∨

k1=0

n∨
k2=0

n∨
k3=0

n∨
k4=0

(PATTERNθ(′(′)[k, k1] ∧

∧Formula[k1, k2] ∧ PATTERNθ(′→′)[k2, k3] ∧
∧Formula[k3, k4] ∧ PATTERNθ(′)′)[k4, n])) ∨

(less[k, n] ∧
n∨

k1=0

n∨
k2=0

n∨
k3=0

n∨
k4=0

(PATTERNθ(′∀′)[k, k1] ∧

∧V ariable[k1, k2] ∧ PATTERNθ(′(′)[k2, k3] ∧
∧ Formula[k3, k4] ∧ PATTERNθ(′)′)[k4, n])).

Lemma 14 For any non-negative k and n and any valuation ∗, the boolean ex-
pression Formula[k, n] is true iff k < n and the binary string p∗k, p

∗
k+1, . . . , p

∗
n−1

is a θ-translation of an arithmetical formula. �

12

3.5 Encoding of Proofs

The full list of Peano Arithmetic axioms consists of propositional axiom schemata,
first-order axiom schemata, and arithmetic-specific axioms and axiom schemata.
For each propositional axiom or scheme we can write a boolean expression
A[k, n] that says that the binary string p∗k, p

∗
k+1, . . . , p

∗
n−1 is equal to a transla-

tion of an appropriate axiom under encoding θ. For example, the propositional
axiom schemata (φ → (ψ → φ)) can be encoded by the following boolean ex-
pression:

A[k, n] =
n∨

k1=0

n∨
k2=0

n∨
k3=0

n∨
k4=0

n∨
k5=0

n∨
k6=0

(

PATTERNθ(′(′)[k, k1] ∧ Formula[k1, k2] ∧
∧ PATTERNθ(′→(′)[k2, k3] ∧ Formula[k3, k4] ∧
∧ PATTERNθ(′→′)[k4, k5] ∧ segeqseg[k5, k6, k1, k2] ∧
∧ PATTERNθ(′))′)[k6, n]).

We also will need boolean expressions TermSubstitution[k, n, kt, nt, kv, nv, k′, n′]
and FormulaSubstitution[k, n, kt, nt, kv, nv, k′, n′]. The first of these expres-
sions states that the term p∗k, . . . , p

∗
n−1 is the result of substitution of the term

p∗kt
, . . . , p∗nt−1 for the variable p∗kv

, . . . , p∗nv−1 into the term p∗k′ , . . . , p
∗
n′−1. The

second expression states that a predicate formula p∗k, . . . , p
∗
n−1 is the result of

substitution of a term p∗kt
, . . . , p∗nt−1 for all free occurrences of the variable

p∗kv
, . . . , p∗nv−1 into the predicate formula p∗k′ , . . . , p

∗
n′−1. Such boolean expres-

sions can be specified through recursion over parameters k and n in a way
which is similar to the recursive definitions of Term[k, n] and Formula[k, n].
The only new element of such definitions would be the use of the expression
segeqseg[i, j, i′, j′] to state that certain segments of the sequence p∗0, p

∗
1, . . . are

equal. Since the use of the expression segeqseg[i, j, i′, j′] has already been illus-
trated in the above definition of the formula A[k, n], we will spare the details.

Using the expression FormulaSubstitution[k, n, kt, nt, kv, nv, k′, n′], one can
write boolean expressions for the propositional axioms of Peano Arithmetic, such
as A[k, n] above. In addition, one can also write similar boolean expressions for
first-order axiom schemata and arithmetic-specific axioms (as well as axiom
schemata). Since the total number of axiom schemata and stand-alone axioms
is finite, we can write a propositional formula Axiom[k, n] that says that a
binary string p∗k, . . . , p

∗
n−1 is equal to a translation of some axiom of arithmetic

under encoding θ.
Next, we will define a propositional formula Proof [n, s] such that for any

non-negative integers n and s and any valuation ∗, the boolean expression
Proof [n, s] is true if and only if the boolean string p∗0, p

∗
1, . . . , p

∗
n−1 is a trans-

lation, under encoding θ, of a Peano Arithmetic proof that contains exactly s
formulas.

Definition 14 For any non-negative integers n and s, the recursive boolean

13

expression Proof [n, s] is defined as follows:

Proof [0, 0] = >,
P roof [n+ 1, 0] = ⊥,
P roof [0, s+ 1] = ⊥,

P roof [n+ 1, s+ 1] =
n∨

k1=0

n∨
k2=0

(Proof [k1, s− 1] ∧

∧ PATTERNθ(′,′)[k1, k2] ∧Axiom[k2, n]) ∨
n∨

i1=0

n∨
i2=0

n∨
i3=0

n∨
i4=0

n∨
j1=0

n∨
j2=0

n∨
j3=0

n∨
j4=0

n∨
j5=0

n∨
j6=0

n∨
k=0

(PATTERNθ(′,′)[i1, i2] ∧ Formula[i2, i3] ∧
∧ PATTERNθ(′,′)[i3, i4] ∧
∧ (lesseq[i4, j1] ∨ lesseq[j6, i1]) ∧
∧ PATTERNθ(′,(′)[j1, j2] ∧
∧ segeqseg[i2, i3, j2, j3] ∧
∧ PATTERNθ(′→′)[j3, j4] ∧ Formula[j4, j5] ∧
∧ PATTERNθ(′),′)[j5, j6] ∧
∧ lesseq[i4, k] ∧ lesseq[j6, k] ∧
∧ Proof [k, s− 1] ∧ segeqseg[j4, j5, k, n]).

3.6 Provability Formula �nα

Definition 15 For any arithmetical formula α, let �nα be the boolean expres-
sion

�nα =
n∨
l=0

(
l∨

s=0

Proof [l, s]) ∧

∧
l∨

k1=0

l∨
k2=0

(PATTERNθ(′,′)[k1, k2] ∧ PATTERNθ(α)[k2, l])).

Lemma 15 For any non-negative integers n, and any arithmetical formula α,
the boolean expression �nα is satisfiable if and only if the formula α has a proof
in Peano Arithmetic of length no more than n. �

Finally, let ∆α
n be defined as ¬�E(n)α.

3.7 System R
We are ready to define the system of boolean recursions R. It is simply the sys-
tem that can be obtained by combining recursive definitions of eq[i, j], less[i, j],
addeq[i, j, k], prev[i, j], subeqsub[i, j, i′, j′], segeqseg[i, j, i′, j′], V ariable[k, n],

14

Term[k, n], Atom[k, n], Formula[k, n], TermSubstitution[k, n, kt, nt, kv, nv, k′, n′],
FormulaSubstitution[k, n, kt, nt, kv, nv, k′, n′], Axiom[k, n], Proof [n, s], and ∆α

n

given above.

Lemma 16 There is a constants c1, c2 and c3 such that

|∆α
l |R ≤ c1 + c2|α|+ c3l.

Proof. See Lemma 5. Constant c1 is a function of R. �

Lemma 17 For any positive integer n and any arithmetical formula α,

` ∆α
n =⇒ PA ` ¬Pre(n)(pαq).

Proof. Consider any proof of ¬�E(l)α in the propositional logic. Translate this
proof into a proof in Peano Arithmetic by interpreting each propositional vari-
able pi as the arithmetical statement “i-th bit in the proof π is equal to 1”. The
result of the translation is a PA proof that any Peano Arithmetic proof π of
length no longer than e(n) does not prove the arithmetical formula α. �

Lemma 18 There is a polynomial p2(x) such that for any positive integer n
and any arithmetical statement α,

PA `x Taut(p∆α
nq) =⇒ PA `p2(x) Pr(p¬Pre(n)(pαq)q).

Proof. By formalization of proof of Lemma 17. �

4 Arithmetical Lemmas

Below we reproduce the standard diagonalization lemma for Peano Arithmetic.
We only add polynomial bound on the proof size. The standard proof of the
diagonalization lemma, also reproduced below, works in this case.

Lemma 19 There is a monotonic polynomial p3(n) such that for any arithmeti-
cal formula α(x) with a single free variable x, there is an arithmetical statement
φ such that

PA `p3(|φ|) φ↔ α(pφq).

Proof. Let sub(a, b) be a term that takes a Gödel number a of an arithmetical
formula with a single free variable x and a Gödel number b of another arith-
metical formula and computes the Gödel number of the result of substitution of
the second formula for the variable x into the first formula. Let k be the Gödel
number of formula α(sub(x, x)). Define the statement φ to be α(sub(k, k)).
Note that

α(pφq) = α(pα(sub(k, k))q) = α(sub(pα(sub(x, x))q, k)) = α(sub(k, k)) = φ.

15

The last equality can be established inside Peano Arithmetic as an equality
of two Gödel numbers: PA ` pα(pφq)q = pφq. It will be done by struc-
tural induction on subformulas of φ. Thus, the entire proof is bounded in size
by a polynomial function of |φ|. Finally, by one of the axioms of equality,
PA ` pα(pφq)q = pφq implies that PA ` α(pα(pφq)q) ↔ α(pφq). Therefore,
PA ` φ ↔ α(pφq), and it can be established in Peano Arithmetic by a proof
whose size is bounded by a polynomial function of |φ|. �

Lemma 20 There is a monotonic polynomial q(x) such that if PA `n φ, then
PA `q(n) Prn(pφq). �

Lemma 21 There is a monotonic polynomial p4(x, y) such that if PA `n φ↔
ψ and PA `m Pr(pψq), then PA `p4(n,m) Prn(pφq).

Proof. Follows from the previous lemma. �

5 Arithmetical Statement ω

In this section we will use the diagonalization lemma to define a provable arith-
metical statement ω such that formula Pr(pωq) has no short arithmetical proofs.

Recall that f ≺ e. Let N be such that for any n > N

p4(p3(n), p2(f(c1 + c2 · p1(n) + c3(n)))) < e(n) (8)

By Lemma 19, there is an arithmetical statement ω such that

PA `p3(|ω|) ω ↔ ¬Pre(blog pωqc+1+N)(pPr(pωq)q).

Let Nω be the size of formula ω. By Lemma 2, Nω = blog(pωq)c+ 1. Hence,

PA `p3(Nω) ω ↔ ¬Pre(Nω+N)(pPr(pωq)q). (9)

Lemma 22 The statement ω is true in the standard model of Peano Arithmetic.

Proof. By contradiction. Assume that the statement ω is false. Thus, by (9),
the statement Pre(Nω+N)(Pr(pωq)) is true. Hence, the statement Pr(pωq) is
true. Therefore, the statement ω is true. Contradiction. �

Lemma 23 The statement ω is provable in Peano Arithmetic.

Proof. This is a true statement which, by (9), is provably equivalent to a state-
ment that contains only bounded quantifiers. �

Lemma 24 PA 0e(Nω+N) Pr(pωq).

16

Proof. By Lemma 22, the statement ω is true. Thus, by the equivalence (9),
the statement Pre(Nω+N)(Pr(pωq)) is false. Hence, PA 0e(Nω+N) Pr(pωq). �

Therefore, ω is an explicit example of a hard-to-prove arithmetical state-
ment. In the next section we will use the statement ω to build a hard-to-prove
propositional formula and, thus, prove Theorem 1.

6 Proof of Theorem 1

Proof. Let R be the defined in Section 3.7 system of boolean recursions. Let b
be boolean expression ∆Pr(pωq)

Nω+N . We will show that the formula b is a tautology
such that ||b||PA > f(|b|R).

First, we will show that formula b is a tautology. Assume the opposite. Thus,
the propositional formula �e(Nω+N)Pr(pωq) is satisfiable. Hence, by Lemma 15,
PA `e(Nω+N) Pr(pωq). Contradiction with Lemma 24.

Next, we will show that PA 0f(|b|R) Taut(pbq). Assume the opposite. Thus,
by the definition of b,

PA `f(|b|R) Taut(p∆
Pr(pωq)
Nω+N q).

By Lemma 18,

PA `p2(f(|b|R)) Pr(p¬Pre(Nω+N)(pPr(pωq)q)q).

By Lemma 21 and statement (9),

PA `p4(p3(Nω),p2(f(|b|R))) Pr(pωq).

By Lemma 16 and the monotonicity of p4, p2, and f ,

PA `p4(p3(Nω),p2(f(c1+c2·|Pr(pωq)|+c3(Nω+N)))) Pr(pωq).

By Lemma 4 and the monotonicity of p2, p4, and p,

PA `p4(p3(Nω),p2(f(c1+c2·p1(Nω)+c3(Nω+N)))) Pr(pωq).

By monotonicity of f , p1, p2, p3, and p4,

PA `p4(p3(Nω+N),p2(f(c1+c2·p1(Nω+N)+c3(Nω+N)))) Pr(pωq).

By the choice of N , see inequality (8),

PA `e(Nω+N) Pr(pωq).

Contradiction with Lemma 24. �

17

7 Acknowledgments

The author would like to thank Klaus Aehlig and Jan Kraj́ıček for the discussion
of this work and the constructive comments they gave. A special credit should
be given to the anonymous reviewers whose suggestions led to more a general
and clean statement of the main result. All remaining errors are solely the
author’s responsibility.

References

[1] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propo-
sitional proof systems. J. Symbolic Logic, 44(1):36–50, 1979.

[2] W. Cook, C. R. Coullard, and Gy. Turán. On the complexity of cutting-plane
proofs. Discrete Appl. Math., 18(1):25–38, 1987.

[3] Armin Haken. The intractability of resolution. Theoret. Comput. Sci., 39(2-
3):297–308, 1985.

[4] Jan Kraj́ıček. Diagonalization in proof complexity. Fund. Math., 182(2):181–
192, 2004.

[5] Jan Kraj́ıček. Implicit proofs. J. Symbolic Logic, 69(2):387–397, 2004.

[6] Jan Kraj́ıček. Structured pigeonhole principle, search problems and hard
tautologies. J. Symbolic Logic, 70(2):619–630, 2005.

[7] Jan Kraj́ıček, Pavel Pudlák, and Alan Woods. An exponential lower bound
to the size of bounded depth Frege proofs of the pigeonhole principle. Ran-
dom Structures Algorithms, 7(1):15–39, 1995.

[8] R. J. Parikh. Some results on the lengths of proofs. Transactions of the
American Mathematical Society, 177:29–36, 1973.

[9] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower
bounds for the pigeonhole principle. Comput. Complexity, 3(2):97–140, 1993.

18

