
Logic of Subtyping

Pavel Naumov

Department of Mathematics
and Computer Science

McDaniel College
Westminster, MD 21157

Abstract

We introduce new modal logical calculi that describe subtyping properties of Carte-
sian product and disjoint union type constructors as well as mutually-recursive types
defined using those type constructors.

Basic Logic of Subtyping S extends classical propositional logic by two new bi-
nary modalities ⊗ and ⊕. An interpretation of S is a function that maps standard
connectives into set-theoretical operations (intersection, union, and complement)
and modalities into Cartesian product and disjoint union type constructors. This
allows S to capture many subtyping properties of the above type constructors. We
also consider logics Sρ and Sω

ρ that incorporate into S mutually-recursive types over
arbitrary and well-founded universes correspondingly.

The main results are completeness of the above three logics with respect to ap-
propriate type universes. In addition, we prove Cut elimination theorem for S and
establish decidability of S and Sω

ρ .

Key words: subtype, Curry-Howard isomorphism, proposition-as-type,
non-standard logic, recursive types, cut-elimination
1991 MSC: 03B60

1 Introduction

1.1 Logical connectives as set operations

We are interested in the use of logical connectives to describe properties of set
and type operations. Historically, there have been two major ways to inter-

Email address: pnaumov@mcdaniel.edu (Pavel Naumov).

Preprint submitted to Theoretical Computer Science 26 May 2005

pret logical connectives as such operations: set semantics and Curry-Howard
isomorphism.

According to the set semantics, every propositional formula is evaluated to
a subset of a given universe U and propositional connectives conjunction ∧,
disjunction ∨, and negation ¬ are identified with set operations intersection ∩,
union ∪, and complement {U correspondingly. It is easy to see that a formula
is provable in the classical propositional logic if and only if it is evaluated to
the entire universe U under any set semantics.

Under Curry-Howard isomorphism (Curry [1934, 1942], Curry and Feys [1958],
Howard [1980]), propositional formulas are evaluated to types and connectives
∧,∨, and → are interpreted as Cartesian product ×, disjoint union +, and
constructive function 7→ type constructors. It could be shown that a formula
is provable in intuitionistic propositional logic (Int) if and only if it is evalu-
ated to an inhabited type. Intuitionistic logic describes properties of Cartesian
product, disjoint union, and function type constructors that can be expressed
in terms of type inhabitness.

Since the list of possible type constructors is not limited to product, disjoint
union, and function, one can raise a question about logical principles describing
behavior of other type constructors. For example, list, partial object [Smith,
1995] and squash [Constable et al., 1986] types can be viewed as modalities
while inductive and co-inductive constructors (Mendler [1991] and Coquand
and Paulin [1990]) may be considered as quasi-quantifiers. Kopylov and Nogin
[2001] established that modal logic of squash operator is, in fact, Lax Logic
[Fairtlough and Mendler, 1997]. If instead of types one considers languages
then logical connectives corresponding to product and star operations are
described by Interval Temporal Logic (Moszkowski and Manna [1984]).

1.2 Logic of Subtyping

In this paper we propose a logical system S that describes subtyping proper-
ties of Cartesian product and disjoint union. This system is an extension of the
classical logic by two binary modalities ⊕ and ⊗, corresponding to Cartesian
product and disjoint union type constructors. Logic S is not the first logical
calculus aimed at axiomatization of subtyping. Meyer [2000] emphasizes that,
developed with philosophical reasons in mind, Logic of Entailment Meyer and
Routley [1972], Routley and Meyer [1972], can be viewed as a logic of sub-
typing. Mitchell [1988] axiomatized subtyping relation for polymorphic types
and proved completeness of this axiomatization with respect to Girard’s Fairt-
lough and Mendler [1997] system F as well as its completeness with respect
to a class of models. This axiomatization only deals with → and ∀, the type

2

constructors present in the system F. Mitchell’s subtyping relation is proven in
Tiuryn and Urzyczyn [1996] to be undecidable. Longo, Milsted, and Soloviev
Longo et al. [1995] proposed to treat subtyping predicate as a sequent `. The
authors designed a sequent calculus, which they called “logic of subtyping”,
and proved its equivalence to Mitchell’s systems. Later, in Longo et al. [2000],
they have started to call this approach “subtyping as entailment”. Natural
deduction and Gentzen-style calculi for this logic of subtyping is described in
Tiuryn [2001]. Valentini and Viale [2002] investigated a similar logic of sub-
typing that includes intersection types. They treat function type as a binary
modality and prove completeness of their logic with respect to applicative
structures.

The main advantage of the system S is that it, unlike earlier calculi, treats
subtyping as an operation, not a relation. Thus, it allows nested occurrences
of subtyping in formulas, making logic more expressive and showing closer
connection between subtyping and implication. For example, the following S-
tautology: φ1 ⊗ φ2 → (ψ1 ⊗ψ2 → φ1 ⊗ψ2), under the defined later semantics,
states that any element of a two different Cartesian products also belongs to
a ”cross-over” of these products. Among less trivial properties that can be
expressed in S is the following property of Cartesian product covers:

Proposition 1 Let I be a finite set T, S be two arbitrary sets, and {Ti}i∈I ,
{Si}i∈I be two families of sets then T × S ⊆ ⋃

i∈I(Ti × Si) if and only if

∀J ⊆ I
(
T ⊆ ⋃

i∈J Ti or S ⊆ ⋃
i∈I\J Si

)
.

It is formalized in S by the inference rule (xp), which will be defined later.
Remarkably, (xp) is the only rule of S related to Cartesian product.

1.3 Recursive Types

Recursive type is an arbitrary solution T of a fixed point type equation
T = f(T). A family of mutually recursive types is an arbitrary solution of
a system of type equations {Ti = fi(T1, . . . , Tn)|i = 1, . . . , n}. Existence of
such types for monotone functions fi could be established using Tarski [1955]
fixed point theorem for complete lattices or Banach fixed-point theorem for
contractive maps on complete metric spaces (see MacQueen et al. [1986]). The
case of non-monotone functions is considered in Cardone and Coppo [1991].
Recursive types have been used to provide semantics for programming lan-
guages and a foundation for automated theorem proving Morris [1968], Huet
[1976], Constable and Mendler [1985], Coquand and Paulin [1990], Mendler
[1991]. Most commonly, the least and the greatest solutions of the above type
equations are considered. They are known as inductive and co-inductive types.
This paper studies subtyping logic of arbitrary recursive types. Logics of in-

3

ductive and co-inductive types would constitute extensions of the logic of
arbitrary recursive types.

Subtyping relation for recursive types was studied in Amadio and Cardelli
Amadio and Cardelli [1993], where a set of type rules and a subtype checking
algorithm for a simply typed λ-calculus is given. These results have been
later extended in Kozen et al. [1995], Brandt and Henglein [1998], and Jim
and Palsberg [1999]. Ghelli [1993] has shown that subtyping algorithm for
a second order system can not be expanded to cover recursive types. Later,
in Colazzo and Ghelli [1999], they gave such algorithm for a system with
bounded second order polymorphism. The are several points in which this
paper is different from the previous works on subtyping of recursive types.
First, we consider recursive types built using type constructors corresponding
to logical connectives ⊗, ⊕, and → of the defined above Logic of Subtyping
S, not a function type constructor. Second, we deal with families of mutually-
recursively defined types. Finally, we do not introduce into the language of our
logic S any new constructors that would represent recursive types. Instead, we
assume that propositional variables of our logic satisfy some system ρ of fixed
point equations. Thus, instead of defining one Subtyping Logic of Mutually
Recursive Types, we will specify a family Sρ of such logics, where ρ ranges
over all possible systems of fixed point equations. Of course, the last difference
is just a matter of notation, but it results in a more elegant presentation of
the logic.

1.4 Type Universe

Introduced in this paper logics of subtyping do not describe subtyping proper-
ties of any particular type system. Instead, they describe common properties of
rather general class of type universes. In other words, we are interested in the
subtyping tautologies that are true in all models of type systems. A universe
is a set (of terms) with defined on it injections inl(x), inr(x), and pair(x, y).
The only condition implosed on those functions is that inl(x) 6= inr(y) for
any two terms x and y. Any model of set theory with standard definitions
of inl, inr, and pair satisfies this definition. So do models of different type
theories defined as a set of syntactical terms (expressions) with an equivalence
relation on it. At the same time, some type theories, such as Nuprl (Constable
et al. [1986]), do not require their models to have a uniform equality relation.
Instead, each type has its own equality. Although, of course, one can define a
uniform equality as the intersection of all equalities, with respect to such uni-
form equality functions inl(x), inr(x), and pair(x, y) may not be injections.
If this is the case then such model is outside of the class of type universes
considered in this paper.

4

Finally, a type we will mean any subset of the universe. This allows the set
of types to be closed under operations of complement and union which is
important given our interpretation of the connective →. Some type systems
consider a more narrow class of types. From the viewpoint of such a system,
our results are still meaningful, because our extra types could be viewed as
just a tool for expressing properties of “lagidimite” types.

1.5 Well-Foundness

In addition to studying the minimal subtyping logic of mutually-recursive
types that describes properties of all possible type universes, we also consider
logic of well-founded universes. We call a universe well-founded if any element
in this universe has a finite ”structure”. Formal definition will be given later.
Standard encoding of type operations into ZF produces well-founded type
universe. Another example of a well-founded type universe is the universe of
expressions built from atoms using operations pair, inl, and inr and syntacti-
cal equality of terms. On the other hand, any universe that includes so-called
“streams” is not well-founded.

We will show that logic S is complete not only with respect to the class of
all universes, but also with respect to the class of well-founded universes. At
the same time, logic Sρ has to be extended by an extra well-foundness rule to
make it complete with respect to well-founded universes.

2 Logics of Subtyping

2.1 Syntax

By a modal propositional formula we mean any expression built from propo-
sitional variables p, q, r, . . . , using binary connectives →, ⊗, ⊕ and 0-arity
connective ⊥. As usual, >, ¬φ, φ ∨ ψ, and φ ∧ ψ are considered to be abbre-
viations for ⊥ → ⊥, φ → ⊥, ¬φ → ψ, and ¬(¬φ ∨ ¬ψ) correspondingly. In
addition, meta negation φ̄ of a modal propositional formula φ is a syntacti-
cal operation that is defined as following: if φ ≡ ¬ψ for some propositional
formula ψ then φ̄ is ψ, otherwise, φ̄ is ¬φ. Finally, a sequent is an arbitrary
pair of finite multisets of modal propositional formulas. Sequent formed by
multisets Γ and ∆ is denoted by Γ ⇒ ∆.

The syntax of subtyping logics, as defined above, does not include any logical
connectives corresponding to recursive type constructors. Instead, recursive

5

types are incorporated into the logic as a set of modal fixed point equations
{pi ≡ φi}i∈I for some finite set I. Such set of equations will be called a
recursion. Formal definition of recursion goes as follows:

Definition 1 Recursion is an arbitrary function from propositional variables
into modal propositional formulas. Recursion ρ is finite if ρ(p) = p for all but
finitely many different propositional variables p.

Of course, not every system of fixed point equations is consistent, or, in other
words, has a type solution. For example, this one: {p ≡ ¬p} has not. As it will
follow from our completeness theorem, in order for such a solution to exist, it
is sufficient for ρ to be positive in the following sense:

Definition 2 An occurrence of a propositional variable in a propositional for-
mula is positive if either this occurrence is within the scope of ⊕ or ⊗ con-
nective or it is not within the scope of an ⊕ or an ⊗ connective, but is in the
premises of an even number of implications.

Recursion ρ will be called positive if for any propositional variable p, formula
ρ(p) has only positive occurrences of propositional variables. Note that identity
function id on propositional formulas is a finite positive recursion.

2.2 Semantics

Definition 3 A universe U is a quadruple 〈Term, pair, inl, inr〉, where Term
is an arbitrary non-empty set, pair is an injection that maps any two elements
of set Term into an element of the same set, and inl and inr are two injections
from Term into Term. It is assumed that the last two functions also satisfy
the following condition: ∀x, y ∈ Term (inl(x) 6= inr(y)).

Elements of the set Term are called terms of the universe U . An arbitrary sub-
set of Term will be called a type of the universe U . In addition to standard set-
theoretical operations on types, such as union, intersection, and complement,
we define operations Cartesian product S × T = {pair(s, t) | s ∈ S, t ∈ T}
and disjoint union S + T = {inl(s) | s ∈ S} ∪ {inr(t) | t ∈ T}.

Definition 4 For any two terms t and s of a universe U , we say that s is a
greatest subterm of t, written as t > s, if t = inl(s), t = inr(s), t = pair(r, s),
or t = pair(s, r)), for some term r. Let relation subterm � be the transitive
closure of the relation >.

Definition 5 A universe is called well-founded if any chain of its terms t1 �
t2 � t3 � . . . is finite. By rank(t1) we mean the maximal length among all
chains starting at t1.

6

Definition 6 Let U be a type universe. A valuation over U is an arbitrary
function from propositional variables into types of universe U .

Definition 7 For any propositional formula φ and any valuation ∗ over a
type universe U , we define type φ∗ of the universe U recursively as

(1) ⊥∗ = ∅,
(2) p∗ = ∗(p),
(3) (ψ → χ)∗ = {(ψ∗) ∪ χ∗,

(4) (ψ ⊕ χ)∗ = ψ∗ + χ∗,
(5) (ψ ⊗ χ)∗ = ψ∗ × χ∗.

Let ρ be a recursion. We say that valuation ∗ is ρ-sound if for any propositional
variable p, (ρ(p))∗ = p∗.

Definition 8 For any sequent Γ ⇒ ∆ and any recursion ρ, let �ρ Γ ⇒ ∆ iff
for any ρ-sound valuation ∗ over an arbitrary universe,

⋂
γ∈Γ γ

∗ ⊆ ⋃
δ∈∆ δ

∗,
where an intersection of an empty family of types is the entire universe U . Let
�ω

ρ Γ ⇒ ∆ mean that the same is true for an arbitrary well-founded universe.

2.3 Inference Rules

Here we present subtyping logics as a Gentzen-style (sequential) calculus.
Hilbert-style version of S is described later.

Definition 9 For any recursion ρ, Logic of Subtyping Sρ is the extension of
the classical sequential logic 1 by the following four inference rules:

{φi}i∈I ⇒ {ψj}j∈J {χi}i∈I ⇒ {ηj}j∈J |I| > 0

{φi ⊕ χi}i∈I ⇒ {ψj ⊕ ηj}j∈J

(xu),

∀J ′ ⊆ J [{φi}i∈I ⇒ {ψj}j∈J ′ or {χi}i∈I ⇒ {ηj}j∈J\J ′] |I| > 0

{φi ⊗ χi}i∈I ⇒ {ψj ⊗ ηj}i∈J

(xp),

Γ, p⇒ ∆

Γ, ρ(p) ⇒ ∆
(lr),

Γ ⇒ ∆, p

Γ ⇒ ∆, ρ(p)
(rr).

If the (xu) rule is quite simple, the same hardly could be said about the
(xp) rule. Each instance of this rule will have as many hypotheses as there
are subsets of the set J . In fact, this rule probably should be called rule
schema because for any conclusion of this rule there are 22|J|

possible sets
of hypotheses from which this conclusion could have been deducted. This is

1 See, for example, propositional fragment of system G1c in Troelstra and
Schwichtenberg [2000].

7

because for every subset J ′ of J only one of statements {φi}i∈I ⇒ {ψj}j∈J ′

and {χi}i∈I ⇒ {ηj}j∈J\J ′ needs to be on the hypotheses list. The rule is a
formalization in our language of Proposition 1.

Definition 10 For any recursion ρ, Subtyping Logic of Well-Founded Uni-
verses Sω

ρ is the extension of Sρ by the following inference rule:

φ⇒ φ⊗ ψ, ψ ⊗ φ, φ⊕ φ

φ⇒
(wf).

Basic logic of subtyping S is the subtyping logic that does not include (lr)
and (rr) rules. Alternatively, it can be viewed as Sid, where id is the identity
recursion. Similarly, Sω is defined as Sω

id. Later in this paper (Corollary 2) we
will establish that Sω = S.

Theorem 1 For any sequent Γ ⇒ ∆ and any finite positive recursion ρ,

(1) Sρ ` Γ ⇒ ∆ ⇐⇒ �ρ Γ ⇒ ∆,
(2) S ` Γ ⇒ ∆ ⇐⇒ �ω

id Γ ⇒ ∆,
(3) Sω

ρ ` Γ ⇒ ∆ ⇐⇒ �ω
ρ Γ ⇒ ∆.

Soundness. Induction on the size of the derivation. Soundness of rules of
Classical Logic is trivial. Let us consider non-classical rules.

(xp). Assume that the valuations of the rule premises are true. We will show
that for any term t, if t ∈ ⋂

i∈I(φi ⊗ χi)
∗ then there is j0 ∈ J such that

t ∈ (ψj0⊗ηj0)
∗. If t ∈ ⋂

i∈I(φi⊗χi)
∗ then t ∈ ⋂

i∈I(φ
∗
i×χ∗i). Since I is not empty,

t ≡ pair(t1, t2) for some terms t1 and t2 such that t1 ∈ φ∗i and t2 ∈ χ∗i for every
i ∈ I. Thus, t1 ∈

⋂
i∈I φ

∗
i and t2 ∈

⋂
i∈I χ

∗
i . Let J ′ = {j ∈ J | t2 ∈ η∗j}. The

valuation of the (xp) rule assumptions implies that either
⋂

i∈I φ
∗
i ⊆

⋃
j∈J ′ ψ∗j

or
⋂

i∈I χ
∗
i ⊆

⋃
j∈J\J ′ η∗j . Let us consider those two cases separately:

(1) Statement t1 ∈
⋂
∈I φ

∗
i implies t1 ∈

⋃
j∈J ′ ψ∗j . Thus, there is j0 ∈ J ′ such

that t1 ∈ ψ∗j0 . At the same time, by the definition of J ′, t2 ∈ η∗j0 . Hence,
t = pair(t1, t2) ∈ ψ∗j0 × η∗j0 = ψj0 ⊗ η∗j0 .

(2) Since t2 ∈
⋂

i∈I χ
∗
i , we have t2 ∈

⋃
j∈J\J ′ η∗j . Thus, there is j0 ∈ J\J ′ such

that t2 ∈ η∗j0 . By the definition of J ′, such j0 would have to belong to J ′.
Contradiction.

(xu). Assume that the valuations of the rule premises are true. We will show
that for any term t, if t ∈ ⋂

i∈I(φi ⊕ χi)
∗ then there is j0 ∈ J such that

t ∈ (ψj0 ⊕ ηj0)
∗. First of all, t ∈ ⋂

i∈I(φi ⊕ χi)
∗ implies that t ∈ (φi ⊕ χi)

∗ for
every i ∈ I. Since I is not empty, either t ≡ inl(u) or t ≡ inr(u) for some term
u such that ∀i(u ∈ (φi)

∗) or ∀i(u ∈ (χi)
∗) correspondingly. Let us consider the

first case. Hence, u ∈ ⋂
i∈I φ

∗
i . Valuation of the first assumption of (xu) rule

8

is
⋂

i∈I φ
∗
i ⊆

⋃
j∈J ψ

∗
j . Thus, u ∈ ⋃

j∈J ψ
∗
j . Therefore, u ∈ ψ∗j0 for some j0 ∈ J .

Finally, t ≡ inl(u) ∈ ψ∗j0 + η∗j0 = (ψj0 ⊕ ηj0)
∗. The second case is similar.

(lr). Since ∗ is a ρ-sound valuation, (ρ(p))∗ = (p)∗. Therefore,
⋂

γ∈Γ γ
∗ ∩

(ρ(p))∗ ⊆ ⋃
δ∈∆ δ

∗ ∪ p∗. Rule (rr) can be handled similarly.

(wf). Assume that for some valuation ∗ and some modal propositional for-
mulas φ, ψ, type φ∗ is not empty and φ∗ ⊆ (φ∗ × ψ∗) ∪ (ψ∗ × φ∗) ∪ (φ∗ + φ∗).
Let t0 be an element of φ∗ of the lowest rank. The subtyping statement above
implies that t = pair(t1, t2) for some t1 ∈ φ∗, t = pair(t1, t2) for some t2 ∈ φ∗,
t = inl(t1) for some t1 ∈ φ∗, or t = inr(t2) for some t2 ∈ φ∗. Any of those
statements contradicts to the minimality of rank of t among elements of φ∗. 2

Completeness will be established later.

Lemma 1 Sρ ` ψ1 ⊗ ψ2 ⇒ φ1 ⊗ φ2, φ̄1 ⊗ ψ2, ψ1 ⊗ φ̄2, for any propositional
formulas φ1, φ2, ψ1, ψ2.

Proof. By (xp) rule, the above sequent is provable if the following eight
statements are true: (1) Sρ ` ψ1 ⇒ φ1, φ̄1, ψ1 or Sρ ` ψ2 ⇒, (2) Sρ ` ψ1 ⇒
φ1, φ̄1 or Sρ ` ψ2 ⇒ φ̄2, (3) Sρ ` ψ1 ⇒ φ1, ψ1 or Sρ ` ψ2 ⇒ ψ2, (4) Sρ `
ψ1 ⇒ φ1 or Sρ ` ψ2 ⇒ ψ2, φ̄2, (5) Sρ ` ψ1 ⇒ φ̄1, ψ1 or Sρ ` ψ2 ⇒ φ2, (6)
Sρ ` ψ1 ⇒ φ̄1 or Sρ ` ψ2 ⇒ φ2, φ̄2, (7) Sρ ` ψ1 ⇒ ψ1 or Sρ ` ψ2 ⇒ φ2, ψ2,
(8) Sρ ` ψ1 ⇒ or Sρ ` ψ2 ⇒ φ2, ψ2, φ̄2. We are left to notice that, since Sρ is
an extension of the classical propositional logic, in statements 1, 2, 3, 5, and
7 the left disjunct is true and in statements 4, 6, and 8 the right disjunct is
true. 2

Lemma 2 Sρ ` ψ1⊕ψ2,¬(φ1⊕φ2) ⇒ φ̄1⊕ φ̄2, for any propositional formulas
φ1, φ2, ψ1, ψ2.

Proof. The following two sequents are provable in the classical fragment of
Sρ: ψ1 ⇒ φ1, φ̄1 and ψ2 ⇒ φ2, φ̄2. Thus, by (xu) rule, Sρ ` ψ1 ⊕ ψ2 ⇒
φ1⊕φ2, φ̄1⊕φ̄2. Therefore, by (li) rule, Sρ ` ψ1⊕ψ2,¬(φ1⊕φ2) ⇒ φ̄1⊕φ̄2. 2

3 Kripke Semantics

In this section we prove completeness theorem for subtyping logics with respect
to a class of Kripke models. Later those Kripke models will be transformed into
type universes to prove type completeness. Under this transformation, worlds
of a Kripke model will be mapped into terms of a universe. To prove com-
pleteness with respect to Kripke models we first define a more general notion
of a Kripke structure and show that any Kripke structure contains an ”em-
bedded” Kripke model. Second, we finish completeness proof by constructing

9

a canonical Kripke structure.

3.1 Kripke Structure

Definition 11 Kripke structure is an arbitrary four-tuple 〈W,R,L, ‖ · ‖〉,
where W is a finite set of “worlds”, R is a binary relation (“directed graph”)
on W , L : R 7→ {π1, π2, σ1, σ2} is a function that assigns labels to the edges
of the graph, ‖ · ‖ : W 7→ 2V ar is a function that for every vertex of the graph
specifies a set of propositional variables. We write wRαv if (w, v) ∈ R and
L(w, v) = α.

Definition 12 Let W be the set of worlds of an arbitrary Kripke structure.
We define subsets ∆n, Πn, Σn, and ∆ of W as follows:

(1) ∆0 = ∅,
(2) Πn = {w | ∃u, v(wRπ1u ∧ wRπ2v) → ∃u, v ∈ ∆n(wRπ1u ∧ wRπ2v)}
(3) Σn = {w | ∃u(wRσ1u ∨ wRσ2u) → ∃u ∈ ∆n(wRσ1u ∨ wRσ2u)}
(4) ∆n+1 = ∆n ∪ (Πn ∩ Σn),
(5) ∆ =

⋃
n ∆n.

Elements of set ∆ will be referred to as well-founded worlds of the Kripke
structure. The set of all worlds that are not well-founded is denoted by Ω.
Informally, a world is well-founded if it can be decomposed into atomic worlds.
A Kripke structure is called well-founded if every world of this structure is
well-founded.

Definition 13 Function h : W 7→ W ′ is a homomorphism between Kripke
structures 〈W,R,L, ‖ · ‖〉 and 〈W ′, R′, L′, ‖ · ‖′〉 if for any world w and any
label α, wRαu implies h(w)R′

αh(u) and, in addition, ‖h(w)‖′ = ‖w‖.

3.2 Kripke Model

Definition 14 Kripke model is a Kripke structure 〈W,R,L, ‖·‖〉 that satisfies
the following additional conditions:

(1) 〈W,R〉 is a, not necessary finite, DAG.
(2) Any two edges leaving the same vertex have different labels.
(3) Any vertex either has both π1- and π2- labeled outgoing edges or none of

them.
(4) Any vertex can not have both σ1- and σ2- outgoing edges.

Definition 15 Let w be a node of a Kripke model. By α(w) we mean the

10

unique node v such that wRαv, if such node exists.

Definition 16 For any node w of a Kripke model and an arbitrary propo-
sitional formula φ, relation w
 φ is defined by induction on complexity of
formula φ:

(1) w 1 ⊥,
(2) w
 p if and only if p ∈ ‖w‖,
(3) w
 φ1 → φ2 if and only if w 1 φ1 or w
 φ2,
(4) w
 φ1 ⊗ φ2 if and only if π1(w)
 φ1 and π2(w)
 φ2,
(5) w
 φ1 ⊕ φ2 if and only if σ1(w)
 φ1 or σ2(w)
 φ2.

Definition 17 Kripke model is ρ-sound if for any world w of this model and
any propositional variable p, w
 p if and only if w
 ρ(p).

Definition 18 For any sequent Γ ⇒ ∆ and any recursion ρ, let
ρ Γ ⇒ ∆
mean that for any world w of any ρ-sound Kripke model if w
 γ for all γ ∈ Γ
then w
 δ for at least one δ ∈ ∆. In addition, let
F

ρ Γ ⇒ ∆ mean that the
same is true for any finite Kripke model 2 .

Theorem 2 For any sequent Γ ⇒ ∆ and any finite recursion ρ,

(1) Sρ ` Γ ⇒ ∆ ⇐⇒
ρ Γ ⇒ ∆,
(2) S ` Γ ⇒ ∆ ⇐⇒
F

id Γ ⇒ ∆,
(3) Sω

ρ ` Γ ⇒ ∆ ⇐⇒
F
ρ Γ ⇒ ∆.

Proof. Soundness (⇒) could be shown similarly to soundness part of Theo-
rem 1. Completeness (⇐) will be established later. 2

Corollary 1 For any finite recursion ρ, logics S and Sω
ρ are decidable.

Corollary 2 For any sequent Γ ⇒ ∆, S ` Γ ⇒ ∆ if and only if Sω ` Γ ⇒ ∆.

3.3 Embedded Models

Definition 19 Embedded model of a Kripke structure K is a pair 〈M,h〉,
where M is a Kripke model and h is a homomorphism of M into K.

Definition 20 Let µ = 〈M,h〉 be an embedded model of a Kripke structure
K, where M = 〈W ′, R′, L′, ‖ · ‖′〉 and K = 〈W,R,L, ‖ · ‖〉. A world w ∈ W ′ is
π-complete if

∃x, y ∈ W (h(w)Rπ1x ∧ h(w)Rπ2y) → ∃u, v ∈ W ′(wR′
π1
u ∧ wR′

π2
v)

2 Well-founded type universes will correspond to finite Kripke models.

11

the same world is σ-complete if

∃x ∈ W (h(w)Rσ1x ∨ h(w)Rσ2x) → ∃u ∈ W ′(wR′
σ1
u ∨ wR′

σ2
u)

The embedded model is complete if each world of this model is π- and σ-
complete.

Clearly any embedded tree can be made complete by expanding it (possibly
infinitely many times):

Lemma 3 For any world w of a Kripke structure K there is a complete em-
bedded model 〈M,h〉 of K and a world v of model M such that h(v) = w. 2

In some cases the embedded complete tree might be made finite. Below, ∆n

refers to the set defined in Definition 12:

Lemma 4 For any well-founded world w ∈ ∆n of a Kripke structure K there
is a finite complete embedded model 〈M,h〉 of K and a world v of model M
such that h(v) = w.

Proof. Induction on n. Base case is true because ∆0, by definition, is empty.
Assume w ∈ ∆n+1. Let k ≤ n be the smallest k such that w ∈ ∆k+1. Thus,
w ∈ Πk and w ∈ Σk. Note that w ∈ Πk implies that either world w does not
have two π-children or it has two π-children w1 and w2 that belong to ∆k. By
the induction hypothesis, there are two complete embedded models 〈M1, h1〉
and 〈M2, h2〉 and worlds v1 and v2 of those models such that h1(v1) = w1

and h2(v2) = w2. Similarly, w ∈ Σk implies that if w has a σi-child w3 then
there is a complete embedded model 〈M2, h3〉 and a world v3 of M3 such that
h3(v3) = w3. We can combine those, at most three, complete embedded models
into one complete embedded model 〈M,h〉. Model M in addition to the worlds
it inherits from models M1,M2,M3 also has a new world v. Relations Rα are
also inherited from models M1,M2,M3 with extra elements (v, v1), (v, v2), and
(v, v3) added to Rπ1 ,Rπ2 , and Rσi

correspondingly. Assume that values of ‖ · ‖
are also inherited from models M1,M2,M3 and that ‖v‖ = ‖w‖. Finally, let
homomorphism h map v into w and is consistent with h1,h2, and h3 on the
other worlds. 2

3.4 Canonical Structure

Definition 21 A set of propositional formulas Φ is syntactically closed with
respect to recursion ρ if

(1) For any propositional variable p such that ρ(p) 6= p, both p and ρ(p) belong
to Φ.

12

(2) If φ1 → φ2 ∈ Φ, φ1 ⊗ φ2 ∈ Φ, or φ1 ⊕ φ2 ∈ Φ then φ1 ∈ Φ and φ2 ∈ Φ.
(3) φ ∈ Φ if and only if φ̄ ∈ Φ for any propositional formula φ.
(4) If φ1 ⊗ φ2 ∈ Φ and ψ1 ⊗ ψ2 ∈ Φ then φ̄1 ⊗ ψ2 ∈ Φ and φ1 ⊗ ψ̄2 ∈ Φ.
(5) If φ1 ⊕ φ2 ∈ Φ then φ̄1 ⊕ φ̄2 ∈ Φ.

Lemma 5 Any finite set of propositional formulas could be extended to a finite
syntactically closed set of formulas. 2

In the rest of this section we will assume that ρ is an arbitrary recursion, Φ is
a finite syntactically closed with respect to ρ set of propositional formulas, L
is one of two logics: Sρ or Sω

ρ . Let us define the canonical structure based on
Φ and L:

Definition 22 Let W be the set of all maximal L-consistent subsets of Φ.

Definition 23 For any set w ∈ W we define the following four projections:
prπ

1 (w) = {φ1 | ∃φ2 (φ1 ⊗ φ2 ∈ w)}, prπ
2 (w) = {φ2 | ∃φ1 (φ1 ⊗ φ2 ∈ w)},

prσ
1 (w) = {φ1 | ∃φ2 (φ1 ⊕ φ2 ∈ w)}, prσ

2 (w) = {φ2 | ∃φ1 (φ1 ⊕ φ2 ∈ w)}.

Definition 24 For any two sets w, u ∈ W , any α ∈ {π, σ}, and any index
i ∈ {1, 2}, let wRαi

u be true if and only if prα
i (w) 6= ∅ and prα

i (w) ⊆ u.

Definition 25 For any w ∈ W , let ‖w‖ = {p ∈ V ar | p ∈ w}.

Lemma 6 〈W,R,L, ‖ · ‖〉 is a Kripke structure. 2

The above defined Kripke structure will be called canonical structure of logic
L based on the syntactically closed set of formulas Φ.

3.5 Properties of Canonical Structure

Lemma 7 For any w ∈ W and any formula φ ⊗ ψ, if φ ⊗ ψ ∈ w then there
are u, v ∈ W such that wRπ

1u and wRπ
2v.

Proof. Since any L-consistent set can be extended to a maximal L-consistent
set, it is sufficient to show that prπ

1 (w) and prπ
2 (w) are consistent. Let us first

prove that prπ
1 (w) is consistent. Indeed, let φ1 ⊗ ψ1, . . . , φn ⊗ ψn be the list of

formulas in w whose outermost operation is ⊗. This list is not empty because
φ ⊗ ψ is on the list. Assume that L ` φ1, . . . , φn ⇒ and use the following
instance of (xp) rule:

φ1, . . . , φn ⇒
φ1 ⊗ ψ1, . . . , φn ⊗ ψn ⇒

to conclude that w is not consistent. Contradiction. Similarly, one can show
that prπ

2 (w) is also consistent. 2

13

Lemma 8 For any w ∈ W and any formula φ ⊕ ψ, if φ ⊕ ψ ∈ w then there
is u ∈ W such that either wRσ

1u or wRσ
2u.

Proof. Since any L-consistent set can be extended to a maximal L-consistent
set, it is sufficient to show that either prσ

1 (w) or prσ
2 (w) is consistent. Indeed,

let φ1⊕ψ1, . . . , φn⊕ψn be the list of formulas in w whose outermost operation
is ⊕. This list is not empty because φ ⊕ ψ is on the list. Assume that L `
φ1, . . . , φn ⇒ and L ` ψ1, . . . , ψn ⇒. By (xu) rule, L ` φ1⊕ψ1, . . . , φn⊕ψn ⇒.
Contradiction with the consistency of w. 2

Lemma 9 For any φ1 → φ2 ∈ Φ and any w ∈ W , φ1 → φ2 ∈ w if and only
if either φ1 /∈ w or φ2 ∈ w. 2

Lemma 10 For any sets w, v, u ∈ W such that wRπ1u and wRπ2v and any
formula φ1 ⊗ φ2 ∈ Φ, φ1 ⊗ φ2 ∈ w if and only if φ1 ∈ u and φ2 ∈ v.

Proof. (⇒): By Definition 23, φ1 ⊗ φ2 ∈ w implies that φ1 ∈ prπ
1 (w) and

φ2 ∈ prπ
2 (w). At the same time, prπ

1 (w) ⊆ u and prπ
2 (w) ⊆ v. Thus, φ1 ∈ u

and φ2 ∈ v. (⇐): Assumption wRπ1u implies that prπ
1 (w) is not empty. Thus,

ψ1 ⊗ ψ2 ∈ w for some formula ψ1 ⊗ ψ2 in Φ. Assume that φ1 ⊗ φ2 /∈ w. By
Definition 21, ¬(φ1 ⊗ φ2) ∈ Φ. Since w is a maximal consistent subset of Φ,
formula ¬(φ1⊗φ2) should belong to w. By Lemma 1, L ` w ⇒ φ̄1⊗ψ2, ψ1⊗φ̄2.
Since, by Definition 21, both φ̄1 ⊗ ψ2 and ψ1 ⊗ φ̄2 belong to Φ, maximality
of w implies that φ̄1 ⊗ ψ2 ∈ w or ψ1 ⊗ φ̄2 ∈ w. Thus, φ̄1 ∈ prπ

1 (w) ⊆ u or
φ̄2 ∈ prπ

2 (w) ⊆ v. Consistency of u and v implies that φ1 /∈ u or φ2 /∈ v. 2

Lemma 11 For any i ∈ {1, 2} and any sets w, u ∈ W such that wRσi
u and

any formula φ1 ⊕ φ2 ∈ Φ, φ1 ⊕ φ2 ∈ w if and only if φi ∈ u.

Proof. Let us consider case i = 1, the other case is similar. (⇒): By Definition
23, φ1 ⊕ φ2 ∈ w implies that φ1 ∈ prσ

1 (w). At the same time, prσ
1 (w) ⊆ u.

Thus, φ1 ∈ u. (⇐): Assumption wRσ1u implies that prσ
1 (w) is not empty.

Thus, ψ1 ⊕ ψ2 ∈ w for some formula ψ1 ⊕ ψ2 in Φ. Assume that φ1 ⊕ φ2 /∈ w.
By Definition 21, ¬(φ1 ⊕ φ2) ∈ Φ. Since w is a maximal consistent subset of
Φ, formula ¬(φ1 ⊕ φ2) should belong to w. By Lemma 2, L ` w ⇒ φ̄1 ⊕ φ̄2.
By Definition 21, φ̄1 ⊕ φ̄2 belongs to Φ. Thus φ̄1 ∈ prσ

1 (w) ⊆ u. Consistency
of u implies that φ1 /∈ u. 2

Lemma 12 For any world w of an embedded model 〈M,h〉 of the canonical
Kripke structure and any formula φ ∈ Φ, w
 φ if and only if φ ∈ h(w).

Proof. Induction on formula φ complexity. Atomic case is trivial. If φ is an
implication, then the required follows from Lemma 9. Let us consider the
remaining cases.

14

Assume that φ be a product φ1⊗φ2. (⇒): w
 φ implies that w has π-children
π1(w), π2(w) and π1(w)
 φ1, π2(w)
 φ2. Hence, by the induction hypothesis,
φ1 ∈ h(π1(w)) and φ2 ∈ h(π2(w)). By Lemma 10, the last conjunction implies
φ1 ⊗ φ2 ∈ h(w). (⇐): By Lemma 7, φ ∈ h(w) implies that h(w) has π1-
and π2-children. Since w is π-complete under embedding h, it also has π-
children π1(w) and π2(w). Since h is a homomorphism, h(w)Rπ

1h(π1(w)) and
h(w)Rπ

2h(π2(w)). Hence, by Lemma 10, φ ∈ h(w) implies that φ1 ∈ h(π1(w))
and φ2 ∈ h(π2(w)). By the induction hypothesis, π1(w)
 φ1 and π2(w)
 φ2.
Therefore, w
 φ.

Suppose that φ be a disjoint union φ1 ⊕ φ2. (⇒): w
 φ implies that either
w has a σ1-child and σ1(w)
 φ1 or w has a σ2-child and σ2(w)
 φ2. Let
us consider the first case. By the induction hypothesis, φ1 ∈ h(σ1(w)). Thus,
by Lemma 11, φ1 ⊕ φ2 ∈ h(w). The second case is similar. (⇐): By Lemma
8, φ ∈ h(w) implies that h(w) has either σ1- or σ2-child. Let us consider
the first case. Since w is σ-complete under embedding h, it also has σ1-child
σ1(w). Since h is a homomorphism, h(w)Rσ

1h(σ1(w)). Hence, by Lemma 11,
φ ∈ h(w) implies that φ1 ∈ h(σ1(w)). By the induction hypothesis, σ1(w)
 φ1.
Therefore, w
 φ. The second case is similar. 2

Next, we will prove the completeness (⇐) part of Theorem 1.

3.6 Kripke Completeness of Logic Sρ

Let Sρ 0 ∆ ⇒ Γ. Thus, X = ∆ ∪ {¬γ | γ ∈ Γ} is Sρ-consistent. By Lemma
5, set X can be extended to a finite syntactically complete set Φ. Consider
canonical Kripke structure based on Φ. Let u be a maximal Sρ-consistent
subset of Φ containing X. By Lemma 3, there is node w of an embedded
Kripke model 〈M,h〉 such that h(w) = v. By Lemma 12, w
 φ for any φ ∈ v.
Thus, w
 φ for any φ ∈ X.

Let us show that model M is ρ-sound. Indeed, if ρ(p) = p then, u
 ρ(p) if and
only if u
 p for any u ∈ W . Assume ρ(p) 6= p. Hence, by Definition 21, both
p and ρ(p) belong to Φ. Thus, by Lemma 12, it will be sufficient to establish
that p ∈ u if and only if ρ(p) ∈ u for any u ∈ W . (⇒): Suppose p ∈ u. By
(rr) rule, Sρ ` u ⇒ ρ(p). Since ρ(p) ∈ Φ and u is a maximal Sρ-consistent
subset of Φ, formula ρ(p) must belong to u. (⇐): If p /∈ u then, by maximality
of u, we have sρ ` u, p ⇒. Hence, by (lr) rule, sρ ` u, ρ(p) ⇒. Since u is
Sρ-consistent, ρ(p) /∈ u. 2

15

3.7 Kripke Completeness of Logic S

Definition 26 For any Kripke model K = 〈W,R,L, ‖ · ‖〉, any u ∈ W , and
any n ≥ 0, let Kn

u be a restriction of this model to worlds from W n
u = {v | u =

v0Rv1R . . . Rvk = v, 0 ≤ k ≤ n}.

Lemma 13 For any world u of an arbitrary Kripke model K, any n ≥ 0 and
an arbitrary modal propositional formula φ that has no more than n instances
of connectives, if
 refers to forcing relation on model K and
′ to the forcing
relation on model Kn

u then w
 φ if and only if w
′ φ.

Proof. Induction on n. 2

Back to the completeness proof. Suppose S 0 ∆ ⇒ Γ. Let n be the maximal
number of connectives among formulas in Γ and ∆. Since S = Sid, complete-
ness of Sρ implies that there is a world u of a Kripke model W such that u
 γ
for all γ ∈ Γ and u 1 δ for all δ ∈ ∆. Consider model W n

u . It is finite and,
by Lemma 13, in this model u
 γ for all γ ∈ Γ and u 1 δ for all δ ∈ ∆.
Therefore, 1F

id Γ ⇒ ∆. 2

3.8 Kripke Completeness of Logic Sω
ρ

Proof of completeness for logic Sω
ρ is similar to the one for logic Sρ, but instead

of Lemma 3 one should use Lemma 4. Thus, we only need to show that in the
case of logic Sω

ρ , the canonical Kripke structure defined above is well-founded.

Definition 27 For any finite set of propositional formulas v, by ∧v we mean
conjunction of all formulas in v. For any finite set V of finite sets of proposi-
tional formulas, by

∨
V we mean disjunction of ∧v for all v ∈ V .

Lemma 14 For any w ∈ W such that prπ
1 (w) and prπ

2 (w) are not empty,

Sω
ρ ` w ⇒ (∧(prπ

1 (w)))⊗ (∧(prπ
2 (w))).

Proof. Let φ1⊗ψ1, . . . , φn⊗ψn be the list of all formulas in w whose outer-most
operation is ⊗. We need to establish that Sω

ρ ` w ⇒ (
∧

i φi)⊗ (
∧

i ψi). Indeed,
the following two sequents are provable in classical logic: φ1, . . . , φn ⇒

∧
i φi

and ψ1, . . . , ψn ⇒
∧

i ψi. By combining them with (xp) rule, we get

Sω
ρ ` φ1 ⊗ ψ1, . . . , φn ⊗ ψn ⇒ (

∧
i

φi)⊗ (
∧
i

ψi).

Finally, multiple applications of (lw) rule to the above sequent result in:
Sω

ρ ` w ⇒ (
∧

i φi)⊗ (
∧

i ψi). 2

16

Lemma 15 For any w ∈ W such that prσ
1 (w) and prσ

2 (w) are not empty,

Sω
ρ ` w ⇒ (∧(prσ

1 (w)))⊕ (∧(prσ
2 (w))).

Proof. Similar to Lemma 14, but use (xu) rule instead of the (xp) rule. 2

Lemma 16 For any X ⊆ Φ, Sω
ρ ` ∧X ⇒ ∨

X⊆u∈W (∧u).

Proof. Assume the opposite. Thus, set X ∪ {¬(∧u) | X ⊆ u ∈ W} is Sω
ρ -

consistent. Let α be a maximal (infinite) Sω
ρ -consistent extension of this set.

Since α is Sω
ρ -consistent,

∀u ∈ W (X ⊆ u⇒ ∃φ ∈ u (¬φ ∈ α)) (1)

Let uα = Φ ∩ α. Note that uα is a maximal Sω
ρ -consistent subset of Φ. Hence,

uα ∈ W . Since X is a subset of Φ and α, we can claim that X ⊆ uα. Thus,
according to (1), there is φ ∈ uα such that ¬φ ∈ α. Since uα ⊆ α, set α
contains both φ and ¬φ. Therefore, α is not Sω

ρ -consistent. Contradiction. 2

Lemma 17 For any w /∈ Π0, Sω
ρ ` w ⇒ (

∨
wRπ1u(∧u))⊗ (

∨
wRπ2v(∧v)).

Proof. Note that since w /∈ Π0, sets prπ
1 (w) and prπ

1 (w) are not empty. Con-
sider Lemma 16 for two cases: X = prπ

1 (w) and X = prπ
2 (w):

Sω
ρ ` ∧(prπ

1 (w)) ⇒
∨

wRπ1u

(∧u), Sω
ρ ` ∧(prπ

2 (w)) ⇒
∨

wRπ2u

(∧u).

We can use (xp) rule to combine the last two statements into one:

Sρ
ρ ` (∧(prπ

1 (w)))⊗ (∧(prπ
2 (w))) ⇒ (

∨
wRπ1u

(∧u))⊗ (
∨

wRπ2u

(∧u)).

The last statement, when combined with Lemma 14, implies that

Sω
ρ ` w ⇒ (

∨
wRπ1u

(∧u))⊗ (
∨

wRπ2v

(∧v)). 2

Lemma 18 Sω
ρ ` w ⇒ (

∨
wRσ1u(∧u))⊕ (

∨
wRσ2v(∧v)), for any w /∈ Σ0.

Proof. Assumption w /∈ Σ0 implies that one of prσ
1 (w), prσ

2 (w) is not empty.
Thus, there are φ and ψ such that φ⊕ψ ∈ w. Hence, both prσ

1 (w) and prσ
2 (w)

are not empty. From here proceed as in Lemma 17, but use (xu) rule instead
of (xp) and Lemma 15 instead of Lemma 14. 2

Lemma 19 Sω
ρ ` w ⇒ (

∨
Ω)⊗ (

∨
W), (

∨
W)⊗ (

∨
Ω), for any w /∈ ⋃

i Πi.

Proof. By Definition 12, assumption w /∈ ⋃
i Πi implies either {u |wRπ1u} ⊆ Ω

or {u |wRπ2u} ⊆ Ω. Let us start with the first case. Since {u |wRπ1u} ⊆ Ω, the

17

following sequent is trivially provable in the classical logic:
∨

wRπ1u(∧u) ⇒
∨

Ω.
Similarly, sequent

∨
wRπ1u(∧u) ⇒

∨
W is provable in the classical logic because

{u |wRσ
2u} is a subset of W . By applying (xp) rule to these two sequents, we

get Sω
ρ ` (

∨
wRπ1u(∧u))⊗ (

∨
wRπ1u(∧u)) ⇒ (

∨
Ω)⊗ (

∨
W). The last statement,

when combined with Lemma 17 implies that Sω
ρ ` w ⇒ (

∨
Ω)⊗(

∨
W). Finally,

by (rw) rule, Sω
ρ ` w ⇒ (

∨
Ω)⊗(

∨
W), (

∨
W)⊗(

∨
Ω). The case {u |wRπ2u} ⊆

Ω is similar. 2

Lemma 20 Sω
ρ ` w ⇒ (

∨
Ω)⊕ (

∨
Ω), for any w /∈ ⋃

i Σi.

Proof. By Definition 12, assumption w /∈ ⋃
i Σi implies that {u |wRσ1u} ⊆ Ω

and {u |wRσ2u} ⊆ Ω. Thus, the following two sequents are provable in the
classical logic:

∨
wRσ1u(∧u) ⇒

∨
Ω and

∨
wRσ1u(∧u) ⇒

∨
Ω. By (xu) rule,

Sω
ρ ` (

∨
wRσ1u(∧u)) ⊕ (

∨
wRσ1u(∧u)) ⇒ (

∨
Ω) ⊕ (

∨
Ω). The last statement,

when combined with Lemma 18 implies that Sω
ρ ` w ⇒ (

∨
Ω)⊕ (

∨
Ω). 2

Lemma 21 Kripke structure K = 〈W,R,L, ‖ · ‖〉 is well-founded.

Proof. Since ∆ = (
⋃

i Πi)∩ (
⋃

i Σi), any element of Ω can not belong to both:⋃
i Πi and

⋃
i Σi. Thus, according to Lemma 19 and Lemma 20, for any w ∈ Ω

Sω
ρ ` w ⇒ (

∨
Ω)⊗(

∨
W), (

∨
W)⊗(

∨
Ω) or Sω

ρ ` w ⇒ (
∨

Ω)⊕(
∨

Ω). Therefore,
by (rw) rule, Sω

ρ ` w ⇒ (
∨

Ω)⊗ (
∨
W), (

∨
W)⊗ (

∨
Ω), (

∨
Ω)⊕ (

∨
Ω), for any

w ∈ Ω. Hence, Sω
ρ ` ∧w ⇒ (

∨
Ω) ⊗ (

∨
W), (

∨
W) ⊗ (

∨
Ω), (

∨
Ω) ⊕ (

∨
Ω), for

any w ∈ Ω. Thus, Sω
ρ `

∨
Ω ⇒ (

∨
Ω)⊗ (

∨
W), (

∨
W)⊗ (

∨
Ω), (

∨
Ω)⊕ (

∨
Ω).

By (wf) rule, Sω
ρ `

∨
Ω ⇒. This implies that Sω

ρ ` w ⇒ for all w ∈ Ω. This
means that every element of Ω is inconsistent. Therefore, Ω is empty. 2

This concludes Kripke completeness proof for logic Sω
ρ .

4 Term Semantics

Definition 28 Let 〈W,R,L, ‖ · ‖〉 be an arbitrary Kripke model. We say that
pair 〈w1, w2〉 of worlds in this model is π-grounded if there is a world v such
that vRπ

1w1 and vRπ
2w2.

Suppose two worlds w1 and w2 of some Kripke model 〈W,R,L, ‖ · ‖〉 are not
grounded. They always can be made grounded by an introduction of a new
element w into set W and pairs 〈w,w1〉 and 〈w,w2〉 to relations Rπ

1 and Rπ
2

correspondingly. Value of ‖w‖ could be assigned arbitrarily. It is clear that
such extension of a Kripke model does not change relation u
 φ for any
propositional formula φ and any world u as long as u 6= w.

Lemma 22 For any positive recursion ρ, if the above construction starts with
a ρ-sound Kripke model then value ‖w‖ could be defined in such a way that

18

the resulting Kripke model is also ρ-sound.

Proof. Consider predicate transformer τ : 2V ar 7→ 2V ar that is defined as
follows: For any X ⊆ V ar define ‖w‖ to be X. Let τ(X) = {p ∈ V ar‖w

ρ(p). It is easy to see that because recursion ρ is positive, predicate transformer
τ is monotonic. Thus, it has a fixed point X0. If ‖w‖ is defined to be X0 then
the model is ρ-sound. 2

Definition 29 Let 〈W,R,L, ‖ · ‖〉 be an arbitrary Kripke model. We say that
world w in this model is σ-grounded if there are worlds u and v such that
uRσ

1w and vRσ
2w.

Using an argument similar to the one above, it can be shown that any world
of a ρ-sound Kripke model can be made σ-grounded by an introduction of at
most two new worlds to the model. Such model modification will preserve

relation on existing worlds and, using predicate transformer technique from
Lemma 22, the new Kripke model can be made ρ-sound.

Definition 30 A Kripke model is grounded if every world of this model is
π-grounded and σ-grounded at the same time.

Lemma 23 For any positive recursion ρ, every ρ-sound Kripke model can be
extended to a ρ-sound grounded Kripke model preserving
 relation on the
existing worlds.

Proof. Use described above construction to add new worlds to the model that
will make all original worlds π- and σ-grounded. Repeat this process infinitely
many times to obtain an expanding chain of Kripke models. Every world will
be π- and σ-grounded starting with some element of the chain. Take the union
of the chain to be the final Kripke model. 2

Definition 31 A Kripke model 〈W,R,L, ‖ · ‖〉 is well-founded if any chain
w0Rw1R . . . RwnR . . . is finite.

Lemma 24 For any positive recursion ρ, every finite ρ-sound Kripke model
can be extended to a ρ-sound well-founded grounded Kripke model preserving

 relation on the existing worlds.

Proof. The algorithm described in the proof of Lemma 23, when applied to
a final Kripke model, produces a well-founded model. 2

Definition 32 For any grounded Kripke model K = 〈W,R,L, ‖ · ‖〉 the uni-
verse UK = 〈Term, pair, inl, inr〉 is defined as follows: Term = W , pair(v, w)
is a world u of the grounded model K such that uRπ

1v and uRπ
2w, inl(v) is a

world u of the grounded model K such that uRσ
1v, inr(v) is a world u of the

grounded model K such that uRσ
2v.

19

Lemma 25 For any well-founded grounded Kripke model K, universe UK is
also well-founded. 2

Definition 33 For any grounded Kripke model K, valuation ∗K over the uni-
verse UK is defined as follows: p∗K = {w | w
 p}.

Lemma 26 For any grounded Kripke model K = 〈W,R,L, ‖·‖〉, any w ∈ W ,
and any propositional formula φ, w
 φ if and only if w ∈ φ∗K .

Proof. Induction on the structural complexity of φ. 2

Corollary 3 For any ρ-sound grounded Kripke model K, valuation ∗K is also
ρ-sound. 2

We are finally ready to finish proofs of Theorem 1. Suppose Sρ 0 Γ ⇒ ∆.
By Theorem 2, there is a Kripke model 〈W,R,L, ‖ · ‖〉 and a world w ∈ W
such that w
 γ for all γ ∈ Γ and w 1 δ for all δ ∈ ∆. By Lemma 23,
this model could be extended to a grounded well-founded Kripke model K.
Consider universe UK . By Lemma 1, w ∈ γ∗K for all γ ∈ Γ and w /∈ δ∗K for
all δ ∈ ∆. Hence,

⋂
Γ∗K * ⋃

∆∗K . Thus, 1ρ Γ ⇒ ∆.

Cases of logic S and Sω
ρ are similar to the one above, but use Lemma 24 instead

of Lemma 23. 2

5 Cut Elimination in S

In this section we will prove Cut elimination theorem for S following Cut
elimination proof for classical logic in Troelstra and Schwichtenberg [2000].

5.1 Absorption of Structural Rules

Definition 34 Cut-free Logic of Subtyping with Absorbed structural rules A
is defined by inference rules listed on Figure 1.

We will refer to (xp) and (xu) rules as X-rules. A formula in the conclusion of
an X-rule is called principal, if it does not belong to Γ or ∆. Principal formula
of other inference rules is defined as usual. Let A+ be the extension of A by
Cut rule and S− be Cut-free fragment of S.

Theorem 3 For any two multisets of propositional formulas Γ and ∆, A+ `
Γ ⇒ ∆ iff S ` Γ ⇒ ∆ and A ` Γ ⇒ ∆ iff S− ` Γ ⇒ ∆. 2

20

Γ, p⇒ ∆, p (ax) Γ,⊥ ⇒ ∆ (lf)

Γ ⇒ φ,∆ Γ, ψ ⇒ ∆

Γ, φ→ ψ ⇒ ∆
(li)

Γ, φ⇒ ψ,∆

Γ ⇒ φ→ ψ,∆
(ri)

∀J ′ ⊆ J(φI ⇒ ψJ ′ or χI ⇒ ηJ\J ′)

Γ, {φi ⊗ χi}i∈I ⇒ ∆, {ψj ⊗ ηj}i∈J

(xp)

φI ⇒ ψJ χI ⇒ ηJ

Γ, {φi ⊕ χi}i∈I ⇒ ∆, {ψj ⊕ ηj}i∈J

(xu)

Fig. 1. Logic A. It is assumed that |I| > 0.

Let A `d φ mean that φ has an A derivation of depth no more than d.

Lemma 27 For any d ≥ 0 and any multisets of formulas Γ, ∆, Γ′, and ∆′,
if A `d Γ ⇒ ∆, then A `d Γ,Γ′ ⇒ ∆,∆′.

Proof. Induction on d. Axioms and inference rules (ri) and (li) can be han-
dled the same way as in the case of the classical propositional logic. Suppose
Γ ⇒ ∆ is deducted by (xu) rule. It means that Γ ≡ Γ0, {φi ⊕ χi}i∈I and
∆ ≡ ∆0, {ψj ⊕ ηj}j∈J for some multisets Γ0,∆0, {φi ⊕ χi}i∈I , {ψj ⊕ ηj}j∈J ,
such that |I| > 0, A `d−1 φI ⇒ ψJ , and A `d−1 χI ⇒ ηJ . Applying rule (xu),
we get A `d Γ,Γ′ ⇒ ∆,∆′. (xp) rule can be handled similarly. 2

The proof of the above lemma provides an algorithm to convert any derivation
D of Γ ⇒ ∆ into a derivation of Γ,Γ′ ⇒ ∆,∆′ of the same depth. We will
denote the resulting derivation as D[Γ′ ⇒ ∆′].

Corollary 4 Weakening rule
Γ ⇒ ∆

Γ,Γ′ ⇒ ∆,∆′ (w) is admissible in A. 2

Lemma 28 For any d ≥ 0 and any multisets of propositional formulas Γ,Γ′,∆,
and ∆′, if `d

A+ Γ ⇒ ∆, then `d
A+ Γ,Γ′ ⇒ ∆,∆′.

Proof. Induction on the size of proof of Γ ⇒ ∆. Similar to the proof of Lemma
27 with addition of one more case corresponding to (c) rule. 2

Lemma 29 For any propositional formula φ, A ` φ⇒ φ.

Proof. Induction on the size of φ. Cases of φ being a propositional variable
or an implication are identical to those for the classical propositional logic.

Assume that φ ≡ χ ⊗ ψ. Since by the induction hypothesis Sid ` χ ⇒ χ and
Sid ` ψ ⇒ ψ, we can use the following instance of (xp) rule

χ⇒ χ ψ ⇒ ψ

χ⊗ ψ ⇒ χ⊗ ψ
(2)

21

to conclude that A ` χ ⊗ ψ ⇒ χ ⊗ ψ. In the formula (2), J is a single-
element set. Thus, there are only two subsets of J : set J itself and empty set
∅. The first premise of (2) corresponds to subset J and the second premise
corresponds to empty subset.

Suppose φ ≡ χ⊕ψ. By the induction hypothesis A ` χ⇒ χ and A ` ψ ⇒ ψ.
We can apply (xu) rule to conclude that A ` χ⊕ ψ ⇒ χ⊕ ψ. 2

Lemma 30 For any d ≥ 0, any multisets of propositional formulas Γ and
∆, and any propositional formulas φ and ψ, if A `d Γ, φ → ψ ⇒ ∆ then
A `d Γ ⇒ ∆, φ and A `d Γ, ψ ⇒ ∆.

Proof. Induction on d. Axioms and inference rules (ri) and (li) can be han-
dled the same way as in the case of the classical propositional logic Assume
that Γ, φ→ ψ ⇒ ∆ is derived by (xu) rule. Thus, the last step of the deriva-
tion has the following form

φI ⇒ ψJ χI ⇒ ηJ

Γ, φ→ ψ, {φi ⊕ χi}i∈I ⇒ ∆, {ψj ⊕ ηj}j∈J

(xu).

One can use derivations of φI ⇒ ψJ and χI ⇒ ηJ and the same (xu) rule to
derive in A sequents Γ, {φi⊕χi}i∈I ⇒ ∆, φ{ψj⊕ηj}j∈J and Γ, ψ, {φi⊕χi}i∈I ⇒
∆, {ψj ⊕ ηj}j∈J . (xp) rule can be treated similarly. 2

Lemma 31 For any d ≥ 0, any multisets of propositional formulas Γ and
∆, and any propositional formulas φ and ψ, if A `d Γ ⇒ φ → ψ,∆ then
A `d Γ, φ⇒ ψ,∆.

Proof. Similar to the proof of Lemma 30. 2

Lemma 32 A is closed under the following two contraction rules

Γ, α, α⇒ ∆

Γ, α⇒ ∆
(lc)

Γ ⇒ α, α,∆

Γ ⇒ α,∆
(rc).

Proof. Induction on the depth d of the A derivation. Assume that Γ, α, α⇒ ∆
is an axiom. Then either there is a propositional variable p such that p ∈
(Γ ∪ {α}) ∩∆ or ⊥ ∈ (Γ ∪ {α}). In either of those cases Γ, α ⇒ ∆ is also an
axiom. Rule (rc) can be handled similarly.

Suppose that Γ, α, α⇒ ∆ is derived by (li) rule. If α is the principal formula
in this rule then α ≡ α1 → α2 for some propositional formulas α1 and α2,
A `d−1 Γ, α1 → α2 ⇒ α1,∆ and A `d−1 Γ, α1 → α2, α2 ⇒ ∆. By Lemma 30,
we can conclude that A `d−1 Γ ⇒ α1, α1,∆ and A `d−1 Γ, α2, α2 ⇒ ∆. Thus,
by the induction hypothesis, A ` Γ ⇒ α1,∆ and A ` Γ, α2 ⇒ ∆. Finally,
by (li) rule, we get A ` Γ, α1 → α2 ⇒ ∆. If not α, but some other formula

22

σ → τ is the principal formula of (li) rule, then A `d−1 Γ, α, α ⇒ σ,∆ and
A `d−1 Γ, α, α, τ ⇒ ∆. By the induction hypothesis, A ` Γ, α ⇒ σ,∆ and
A ` Γ, α, τ ⇒ ∆. Hence, by (li) rule, we can conclude that A ` Γ, α, σ → τ ⇒
∆. Inference rule (ri) as well as the other contraction rule could be handled
similarly.

Suppose that Γ, α, α ⇒ ∆ is derived by (xu) rule. If at least one of two αs
is not principal in this rule then the same rule could be used to derive the
sequent without this instance of α. Assume that both αs are principal. Hence,
α ≡ α1 ⊕ α2 for some formulas α1 and α2 and the instance of (xu) rule has
the following form:

α1, α1, φI ⇒ ψJ α2, α2, χI ⇒ ηJ

Γ0, α1 ⊕ α2, α1 ⊕ α2, {φi ⊕ χi}i∈I ⇒ ∆0, {ψj ⊕ ηj}j∈J

(xu)

By the induction hypothesis, A ` α1, φI ⇒ ψJ and A ` α2, χI ⇒ ηJ . Applying
(xu) rule, we get A ` Γ0, α1 ⊕ α2, {φi ⊕ χi}i∈I ⇒ ∆0, {ψj ⊕ ηj}j∈J . The other
contraction rule could be handled similarly.

If Γ, α, α ⇒ ∆ is derived by (xp) rule then we can show that Γ, α ⇒ ∆
using the same argument as in the previous case. Assume that Γ ⇒ α, α,∆
is derived by (xp) rule. We will show that A ` Γ ⇒ α,∆. Indeed, if at least
one of two αs is not principal in (xp) rule then the same rule could be used
to derive the sequent without this instance of α. If both αs are principal then
α ≡ α1 ⊕α2 for some formulas α1 and α2, the conclusion of (xp) rule has the
following form:

Γ0, {φi ⊗ χi}i∈I ⇒ ∆0, {ψj ⊗ ηj}j∈J , α1 ⊗ α2, α1 ⊗ α2

and multiple premises of that rule could be arranged into the following three
groups

(1) ∀J ′ ⊆ J(φI ⇒ ψJ ′ or χI ⇒ ηI\J ′ , α2, α2),
(2) ∀J ′ ⊆ J(φI ⇒ ψJ ′ , α1 or χI ⇒ ηI\J ′ , α2),
(3) ∀J ′ ⊆ J(φI ⇒ ψJ ′ , α1, α1 or χI ⇒ ηI\J ′).

By the induction hypothesis, from the first and the third of the above state-
ments we can conclude that

∀J ′ ⊆ J(A ` φI ⇒ ψJ ′ or A ` χI ⇒ ηI\J ′ , α2),

∀J ′ ⊆ J(A ` φI ⇒ ψJ ′ , α1 or A ` χI ⇒ ηI\J ′).

Therefore, by (xp) rule, A ` Γ0, {φi⊗χi}i∈I ⇒ ∆0, {ψj ⊗ ηj}j∈J , α1⊗α2. 2

23

5.2 Cut Elimination Algorithm

Theorem 4 For any two multisets of modal propositional formulas Γ and ∆,

A+ ` Γ ⇒ ∆ =⇒ A ` Γ ⇒ ∆

Proof. Consider any instance of the Cut rule in the derivation

D1

Γ ⇒ ∆, α
(r1)

D2

α,Γ ⇒ ∆
(r2)

Γ ⇒ ∆
(c). (3)

Let d be the depth of the derivation and s be the size of α. We will show by
induction on 〈s, d〉 that if the left and the right subtrees of derivation (3) are
cut-free then A ` Γ ⇒ ∆. Just like in the Classical Logic case, there are three
major cases to consider:

A. at least one of (r1) and (r2) is an axiom instance;
B. (r1) and (r2) are not axioms and at least in one of the premises α is not

principal;
C. (r1) and (r2) are not axioms and α is principal in both premises.

Case A. Suppose that Γ ⇒ ∆, α is an axiom. Then either (i) ⊥ ∈ Γ, or (ii)
Γ ∩ ∆ contains a propositional variable, or (iii) α is a propositional variable
and α ∈ Γ. In the first two cases Γ ⇒ ∆ is also an axiom. In the third case,
we can apply (lc) rule (see Lemma 32) to sequent α,Γ ⇒ ∆ to conclude that
A ` Γ ⇒ ∆.

Case B. Although α could be principal in (r1) or (r2), we only will consider
here the first of those subcases. Proof for the other one is similar. The first
subcase will be split further based on what kind of rule (r1) turns out to be.

Let(r1) be (li) rule. Then derivation (3) takes the form

D11

Γ′ ⇒ ∆, γ1, α

D12

Γ′, γ2 ⇒ ∆, α
Γ ⇒ ∆, α

(li)
D2

α,Γ ⇒ ∆
(r2)

Γ ⇒ ∆
(c). (4)

for some multiset of formulas Γ′ and propositional formulas γ1 and γ2 such
that Γ ≡ Γ′∪{γ1 → γ2}. Derivation (4) can be transformed into the following
derivation:

D11[γ1 → γ2 ⇒]

Γ ⇒ ∆, γ1, α

D2[⇒ γ1]

α,Γ ⇒ ∆, γ1

Γ ⇒ ∆, γ1

D12[γ1 → γ2 ⇒]

Γ, γ2 ⇒ ∆, α

D2[γ2 ⇒]

α,Γ, γ2 ⇒ ∆
Γ, γ2 ⇒ ∆

Γ, γ1 → γ2 ⇒ ∆
. (5)

24

Although this derivation has two instances of the cut rule, by Lemma 27
both of them are applied to trees of lower depth than the trees to which
the cut rule is applied in derivation (4). Hence, by the induction hypothesis,
A ` Γ, γ1 → γ2 ⇒ ∆. By Lemma 32, A ` Γ ⇒ ∆.

Next, assume that (r1)=(xu) and α is not a principal formula of this rule.

Then the derivation (3) can be replaced by the cut-free derivation
D1

Γ ⇒ ∆
(xp).

Similar argument can be made in the case when (r1)=(xp).

Case C. We will consider the following three subcases: α ≡ α1 → α2, α ≡
α1 ⊗ α2, and α ≡ α1 ⊕ α2 for some formulas α1 and α2.

If α ≡ α1 → α2 is principal formula in both (r1) and (r2) then (r1)=(ri)
and (r2)=(li). Hence, the derivation (3) has the form:

D11

Γ, α1 ⇒ ∆, α2

Γ ⇒ ∆, α1 → α2

(ri)

D21

Γ ⇒ ∆, α1

D22

Γ, α2 ⇒ ∆
α1 → α2,Γ ⇒ ∆

(li)

Γ ⇒ ∆
(c) (6)

that can be re-arranged into a derivation in which both cut rule applications
have smaller rank:

D21

Γ ⇒ ∆, α1

D11

Γ, α1 ⇒ ∆, α2

D22[α1 ⇒]

Γ, α1, α2 ⇒ ∆
Γ, α1 ⇒ ∆

(c)

Γ ⇒ ∆
(c).

Assume that α ≡ α1 ⊕ α2. Since α is the principal formula in (r1) and (r2),
each of these rules is (xu). Thus, the left subtree of the derivation (3) has the
form

D11

φI1 ⇒ ψJ1 , α1

D12

χI1 ⇒ ηJ1 , α2

Γ1, {φi ⊕ χi}i∈I1 ⇒ ∆1, {ψj ⊕ ηj}j∈J1 , α1 ⊕ α2

(xu), (7)

and the right subtree of the same derivation has the form

D21

α1, φI2 ⇒ ψJ2

D22

α2, χI2 ,⇒ ηJ2

Γ2, α1 ⊕ α2, {φi ⊕ χi}i∈I2 ,⇒ ∆2, {ψj ⊕ ηj}j∈J2

(xu), (8)

where Γ ≡ Γ1, {φi ⊕ χi}i∈I1 ≡ Γ2, {φi ⊕ χi}i∈I2 and ∆ ≡ ∆1, {ψj ⊕ ηj}j∈J1 ≡
∆2, {ψj ⊕ ηj}j∈J2 . The derivations (7) and (8) could be re-arranged into the
following two derivations:

D11[φI2 ⇒ ψJ2]

φI1 , φI2 ⇒ ψJ1 , ψJ2 , α1

D21[φI1 ⇒ ψJ1]

α1, φI1 , φI2 ⇒ ψJ1 , ψJ2

φI1 , φI2 ⇒ ψJ1 , ψJ2

(c),

25

D12[χI2 ⇒ ηJ2]

χI1 , χI2 ⇒ ηJ1 , ηJ2 , α2

D22[χI1 ⇒ ηJ1]

α2, χI1 , χI2 ⇒ ηJ1 , ηJ2

χI1 , χI2 ⇒ ηJ1 , ηJ2

(c).

Since those two derivations have cutformulas of smaller size than the original
derivation, we can use induction hypothesis to conclude that A ` φI1 , φI2 ⇒
ψJ1 , ψJ2 and A ` χI1 , χI2 ⇒ ηJ1 , ηJ2 . Hence, by (xu) rule, A ` Γ1,Γ2, {φi ⊕
χi}i∈I1 , {φi ⊕ χi}i∈I2 ⇒ ∆1,∆2, {ψj ⊕ ηj}j∈J1 , {ψj ⊕ ηj}j∈J2 . In other words,
Γ,Γ ` ∆,∆. Therefore, by Lemma 32, A ` Γ ⇒ ∆.

Assume α ≡ α1⊗α2. Since α is the principal formula in rules (r1) and (r2),
each of them is (xp). Also, the premises of the rule (r1) could be combined
into the following two groups:

∀J ′1 ⊆ J1(A ` φI1 ⇒ ψJ ′
1

or A ` χI1 ⇒ ηJ1\J ′
1
, α2) (9)

∀J ′1 ⊆ J1(A ` φI1 ⇒ ψJ ′
1
, α1 or A ` χI1 ⇒ ηJ1\J ′

1
) (10)

and premises of rule (r2) are:

∀J ′2 ⊆ J2(A ` α1, φI2 ⇒ ψJ ′
2

or A ` α2, χI2 ⇒ ηJ2\J ′
2
) (11)

where Γ ≡ Γ1, {φi ⊗ χi}i∈I1 ≡ Γ2, {φi ⊗ χi}i∈I2 and ∆ ≡ ∆1, {ψj ⊗ ηj}j∈J1 ≡
∆2, {ψj ⊗ ηj}j∈J2 . We need to show that A ` Γ ⇒ ∆. By Lemma 32, it is
sufficient to show that A ` Γ,Γ ⇒ ∆,∆. Furthermore, according to the (xp)
rule, this would follow from provability in A of the following group of sequents:

∀J ′1 ⊆ J1,∀J ′2 ⊆ J2(φI1 , φI2 ⇒ ψJ ′
1
, ψJ ′

2
or χI1 , χI2 ⇒ ηJ1\J ′

1
, ηJ2\J ′

2
).

We will show, by contradiction, that the above sequents are provable in A.
Indeed, let for some J ′1 ⊆ J1 and J ′2 ⊆ J2:

0A φI1 , φI2 ⇒ ψJ ′
1
, ψJ ′

2
, 0A χI1 , χI2 ⇒ ηJ1\J ′

1
, ηJ2\J ′

2
. (12)

Hence, by Lemma 27, 0A φI1 ⇒ ψJ ′
1

and 0A χI1 ⇒ ηJ1\J ′
1
. Combining the last

statement with (9) and (10) we can conclude that A ` χI1 ⇒ ηJ1\J ′
1
, α2 and

A ` φI1 ⇒ ψJ ′
1
, α1. Thus, by Lemma 27,

A ` χI1 , χI2 ⇒ ηJ1\J ′
1
, ηJ2\J ′

2
, α2, A ` φI1 , φI2 ⇒ ψJ ′

1
, ψJ ′

2
, α1. (13)

However, by the same Lemma 27, we can conclude from (11) that either A `
α1, φI1 , φI2 ⇒ ψJ ′

1
, ψJ ′

2
or A ` α2, χI1 , χI2 ⇒ ηJ1\J ′

1
, ηJ2\J ′

2
. Hence, taking into

account (13), we can say that either sequent φI1 , φI2 ⇒ ψJ ′
1
, ψJ ′

2
or sequent

χI1 , χI2 ⇒ ηJ1\J ′
1
, ηJ2\J ′

2
is provable in A+ with just a single use of the Cut

rule. In the case of the first sequent, the cutformula is α1 and in the case of
the second sequent the cutformula is α2, either of them has a smaller size than
α1 ⊗ α2. Thus, by the induction hypothesis, either A ` φI1 , φI2 ⇒ ψJ ′

1
, ψJ ′

2
or

A ` χI1 , χI2 ⇒ ηJ1\J ′
1
, ηJ2\J ′

2
. Contradiction to (12). 2

26

6 Hilbert Axiomatics

Definition 35 Hilbert version HS of basic Subtyping Logic is the minimal,
closed under Modus Ponens, extension of Classical Propositional Logic by the
following axioms and inference rules for Cartesian product and disjoint union:

(1) ⊥⊗ φ→ ⊥, φ⊗⊥ → ⊥, ⊥⊕⊥ → ⊥,
(2) (φ→ ψ)⊗ (χ→ τ) → (φ⊗ χ→ ψ ⊗ τ),
(3) (φ→ ψ)⊕ (χ→ τ) → (φ⊕ χ→ ψ ⊕ τ),
(4) µ⊗ ν → [(φ⊗ ν → ψ ⊗ ν) → (φ→ ψ)⊗ ν],
(5) µ⊗ ν → [(µ⊗ φ→ µ⊗ ψ) → µ⊗ (φ→ ψ)],
(6) µ⊕ ν → [(φ⊕ χ→ ψ ⊕ τ) → (φ→ ψ)⊕ (χ→ τ)],
(7) φ→ ψ, χ→ τ ` φ⊗ χ→ ψ ⊗ τ ,
(8) φ→ ψ, χ→ τ ` φ⊕ χ→ ψ ⊕ τ .

Theorem 5 For any two multisets of modal propositional formulas Γ and ∆,
S ` Γ ⇒ ∆ if and only if HS ` ∧

Γ → ∨
∆. 2

7 Conclusions

We have developed a sequential logical calculus Sω that describes subtyp-
ing properties of mutually-recursive types built using Cartesian product and
disjoint union. From logical prospective, this calculus is an extension of the
classical propositional logic by just two new binary modalities: ⊗ and ⊕. We
have proved its completeness with respect to all algebras of terms. In case
when the set of fixed point equations is empty, this calculus becomes basic
logic of subtyping S. We proved Cut elimination theorem and gave Hilbert-
style axiomatic for S. We also investigated the case of well-founded universes.
It turns out that in this case the basic logic of subtyping (without recursive
types) stays the same, but subtyping logic of recursive types needs an extra
well-foundness inference rule for completeness. Subtyping logic of mutually-
recursive types over well-founded universe Sω

ρ is proven to be decidable. The
same question about logic Sρ of all mutually-recursive types remains open.

The most logical next step in this work is the description of subtyping logics
of inductive and co-inductive types. Those are logics describing subtyping
properties of the least and the greatest solutions of the appropriate system
of type equations. Another direction of the future research is the extension of
subtyping logic S by modalities corresponding to the other type constructors:
constructive and non-constructive function, quotient, dependent product, etc.

The author is thankful to Alexei Kopylov for fruitful discussions at the early

27

stages of this work and to anonymous reviewer for many insightful comments
constructive suggestion.

References

R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions
on Programming Languages and Systems, 15(4):575–631, September 1993.

M. Brandt and F. Henglein. Coinductive axiomatization of recursive type
equality and subtyping. Fund. Inform., 33(4):309–338, 1998. ISSN 0169-
2968. Typed lambda-calculi and applications (Nancy, 1997).

F. Cardone and M. Coppo. Type inference with recursive types: syntax and
semantics. Inform. and Comput., 92(1):48–80, 1991. ISSN 0890-5401.

D. Colazzo and G. Ghelli. Subtyping recursive types in kernel fun. In Logic
in Computer Science, pages 137–146, 1999.

R. L. Constable et al. Implementing Mathematics with Nuprl Proof Develop-
ment System. Prentice Hall, 1986.

R. L. Constable and N. P. Mendler. Recursive definitions in type theory. In
Logics of programs (Brooklyn, N.Y., 1985), volume 193 of Lecture Notes in
Comput. Sci., pages 61–78. Springer, Berlin, 1985.

T. Coquand and C. Paulin. Inductively defined types. In COLOG-88 (Tallinn,
1988), pages 50–66. Springer, Berlin, 1990.

H. B. Curry. Functionality in combinatory logic. Proc. Nat. Acad. Sci. U. S.
A., 20:584–590, 1934.

H. B. Curry. The combinatory foundations of mathematical logic. J. Symbolic
Logic, 7:49–64, 1942.

H. B. Curry and R. Feys. Combinatory logic. Vol. I. North-Holland Publishing
Co., Amsterdam, 1958.

M. Fairtlough and M. Mendler. Propositional lax logic. Inform. and Comput.,
137(1):1–33, 1997. ISSN 0890-5401.

G. Ghelli. Recursive types are not conservative over F≤. In M. Bezen and
J. Groote, editors, Proceedings of thethe International Conference on Typed
Lambda Calculi and Applications (TLCA), Utrecht, The Netherlands, pages
146–162, Berlin, March 1993. Springer Verlag.

W. A. Howard. The formulae-as-types notion of construction. In To H. B.
Curry: essays on combinatory logic, lambda calculus and formalism, pages
480–490. Academic Press, London, 1980.

G. Huet. Résolution d’equations dans les languages d’order 1, 2, . . . , ω. PhD
thesis, Université de Paris 7, 1976.

T. Jim and J. Palsberg. Type inference in systems of recursive types with
strong subtyping. Manuscript, 1999.

A. Kopylov and A. Nogin. Markov’s principle for propositional type theory. In
L. Fribourg, editor, Computer Science Logic: 15th International Workshop,
CSL 2001. 10th Annual Conference of the EACSL (Paris, France, 2001),

28

volume 2142 of Lecture Notes in Computer Science, pages 570–584. Springer,
2001.

D. Kozen, J. Palsberg, and M. I. Schwartzbach. Efficient recursive subtyping.
Math. Structures Comput. Sci., 5(1):113–125, 1995. ISSN 0960-1295.

G. Longo, K. Milsted, and S. Soloviev. Coherence and transitivity of subtyping
as entailment. In 10th Annual IEEE Symposium on Logic in Computer
Science (San Diego, CA, 1995), pages 292–300. IEEE Comput. Soc. Press,
Los Alamitos, CA, 1995.

G. Longo, K. Milsted, and S. Soloviev. Coherence and transitivity of subtyping
as entailment. J. Logic Comput., 10(4):493–526, 2000. ISSN 0955-792X.

D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive poly-
morphic types. Inform. and Control, 71(1-2):95–130, 1986. ISSN 0019-9958.

N. P. Mendler. Inductive types and type constraints in the second-order
lambda calculus. Ann. Pure Appl. Logic, 51(1-2):159–172, 1991. ISSN
0168-0072. Second Annual IEEE Symposium on Logic in Computer Sci-
ence (Ithaca, NY, 1987).

R. K. Meyer. What entailment can do for type theory. Technical report,
Computer Science Laboratory, Australian National University, Canberra,
Australia, April 2000.

R. K. Meyer and R. Routley. Algebraic analysis of entailment. I. Logique et
Analyse (N.S.), 15:407–428, 1972.

J. C. Mitchell. Polymorphic type inference and containment. Inform. and
Comput., 76(2-3):211–249, 1988. ISSN 0890-5401.

J. H. Morris. Lambda Calculus Models of Programming Languages. PhD thesis,
MIT, 1968.

B. Moszkowski and Z. Manna. Reasoning in interval temporal logic. In Logics
of programs (Pittsburgh, Pa., 1983), volume 164 of Lecture Notes in Comput.
Sci., pages 371–382. Springer, Berlin, 1984.

R. Routley and R. K. Meyer. The semantics of entailment. II. J. Philos. Logic,
1(1):53–73, 1972.

S. Smith. Hybrid partial-total type theory. Internat. J. Found. Comput. Sci.,
6:235–263, 1995. ISSN 0129-0541.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
J. Math., 5:285–309, 1955.

J. Tiuryn. A sequent calculus for subtyping polymorphic types. Inform. and
Comput., 164(2):345–369, 2001. ISSN 0890-5401.

J. Tiuryn and P. Urzyczyn. The subtyping problem for second-order types is
undecidable. In 11th Annual IEEE Symposium on Logic in Computer Sci-
ence (New Brunswick, NJ, 1996), pages 74–85. IEEE Comput. Soc. Press,
Los Alamitos, CA, 1996.

A. S. Troelstra and H. Schwichtenberg. Basic proof theory. Cambridge Uni-
versity Press, Cambridge, second edition, 2000. ISBN 0-521-77911-1.

S. Valentini and M. Viale. The binary modal logic of the intersec-
tion types. URL http://www.math.unipd.it/~silvio/WorkinProg.html.
Manuscript, 2002.

29

