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Abstract. The classical propositional logic is known to be sound and complete with re-

spect to the set semantics that interprets connectives as set operations. The paper extends

propositional language by a new binary modality that corresponds to partial recursive

function type constructor under the above interpretation. The cases of deterministic and

non-deterministic functions are considered and for both of them semantically complete

modal logics are described and decidability of these logics is established.
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Introduction

We are interested in the use of logical connectives to describe properties of
the set and type operations. Historically, there have been two major ways to
interpret logical connectives as such operations: Curry-Howard isomorphism
and set semantics.

Under Curry-Howard isomorphism ([3, 4, 5, 8]), propositional formu-
las are interpreted as types and connectives ∧,∨, and → are interpreted as
Cartesian product, disjoint union, and constructive function type construc-
tors. It can be shown that a formula is provable in intuitionistic propositional
logic if and only if it is always evaluated to an inhabited type. Thus, in-
tuitionistic logic could be viewed as a calculus that describes properties of
Cartesian product, disjoint union, and function type constructors.

Since the list of possible type constructors is not limited to just the trio of
product, disjoint union, and function, one can raise a question about logical
principles describing behavior of other type constructors. For example, list,
partial object [16] and squash [1] types can be viewed as modalities while
inductive and co-inductive constructors ([11] and [2]) may be considered as
quasi-quantifiers. In fact, [9] established that modal logic of squash operator
is Lax Logic [6].

According to the set semantics, every propositional formula is evaluated
to a subset of a given universe U and propositional connectives conjunction
∧, disjunction ∨, and negation ¬ are identified with set operations intersec-
tion ∩, union ∪, and complement {U , correspondingly. It is easy to see that
a formula is provable in the classical propositional logic if and only if it is
evaluated to the entire universe U under any interpretation of propositional
variables.
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Several possible extensions of the classical logic by modal operators cor-
responding, under the above set semantics, to additional set operations have
been considered. [10] established that if the universe U is a topological space,
then modal logic S4 describes properties of the interior operator. If the uni-
verse U is the set of all words in some alphabet, then properties of the logical
connectives corresponding to product and star operations are axiomatized
by Interval Temporal Logic [12]. In [13, 14], the author describes an exten-
sion of the classical propositional logic by binary modalities, corresponding
to the operations disjoint union and Cartesian product.

This paper considers an extension of the classical propositional logic by a
binary modality B, corresponding to computable function type constructor.
Namely, if U is the universe of all words in some alphabet, then (φB ψ)∗ is
the set of all Turing machine descriptions of partial recursive functions from
φ∗ into ψ∗. We consider cases of deterministic and nondeterministic Turing
machines. For both of them complete Hilbert-style axiomatizations of the
appropriate modal logics is given. It turns out that modal logic of deter-
ministic functions <d is an extension of the modal logic of nondeterministic
functions < by just one additional axiom.

The modality φ B ψ of the logics of partial recursive functions is, es-
sentially, a form of Hoare triple φ{α}ψ with a fixed program variable α.
Thus, there is some similarity between modal logics of recursive functions
and the dynamic logic [7]. For example, introduced below axiom of logic <:
φB ψ → (χB ψ → (φ ∨ χ) B ψ) could be related to dynamic logic theorem
φ{α}ψ → (χ{α}ψ → (φ ∨ χ){α}ψ). This similarity, however, ends once
iterative applications of the modality are considered. For example, formula
(>{α}φ){α}φ is also a theorem of the dynamic logic but modal formula
(>B φ) B φ is valid neither in < nor in <d.

This paper focuses on soundness and completeness of logics < and <d

with respect to the class of partial recursive functions. As one can expect, the
results can be easily relativized by an oracle. It is worth mentioning, though,
that soundness and completeness proofs, presented in this paper, could also
be adopted for some subclasses of the class of partial recursive functions such
as, for example, polynomial functions and finite-domain functions. Hence,
both of these logics capture very general properties of “complete”, in some
informal sense, classes of enumerable functions. The downside of this, of
course, is that more specific properties of recursive functions are not re-
flected in these logics. For example, many of the properties of recursive
functions captured by the intuitionistic logic under Curry-Howard isomor-
phism, such as closure under composition, could not be expressed in logics
< and <d. One should think of these logics more as an attempt to reason



On Modal Logics of Partial Recursive Functions 3

about functions in (a modal extension of) the classical propositional logic
rather than a modal axiomatization of recursiveness. Similarly defined logics
of total recursive functions, as will be mentioned in the conclusion, would
provide a significantly more expressive language. Our investigation of log-
ics < and <d could be viewed as a first step towards study of such more
expressive logics.

The results for logics < and <d will be presented together. In the next
section we discuss the definition of the recursive functions and the Kleene
recursion theorem on which our completeness results are based. In Section 3,
a formal semantics of the modal logics of recursive functions is given. Section
4 lists axioms and inference rules for both logics and verifies their soundness.
The rest of the paper is dedicated to the completeness proof. In Section 5,
Kripke-style models for < and <d are introduced and completeness of these
logics with respect to appropriate classes of the Kripke models is proven. In
Section 6, in order to finish the proof of the completeness theorem, we show
how Kripke models could be converted into sets of partial recursive functions.
Decidability of the logics follows from finiteness of the corresponding Kripke
models. Section 7 concludes with the discussion of an alternative definition
of the logic of nondeterministic partial recursive functions and the logics of
total recursive functions.

Recursive functions

We study modal logic descriptions of partial recursive functions. The two
classes of recursive functions – deterministic and nondeterministic – will be
considered. Nondeterministic partial recursive functions could be described,
for example, as nondeterministic Turing machines. Value f(x) of a nonde-
terministic function f on an argument x is defined as the set of all values
that a nondeterministic machine representing f can return on input x. De-
terministic partial recursive function is a special case of nondeterministic
function whose value is a set that has no more than one element.

We consider an enumeration {ξu}u∈U of partial recursive functions from
a universe U into U by the elements of the same universe U . The two ma-
jor cases that will be considered are: a) {ξu}u∈U is an enumeration of all
nondeterministic partial recursive functions and b) {ξu}u∈U is an enumera-
tion of all deterministic partial recursive functions. The exact choice of the
universe, such as Turing machines or λ-terms, and the enumeration will not
be important as long as the following version of Kleene recursion theorem is
satisfied:
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Theorem 1. For any finite set f1, . . . , fn of total recursive functions from
Un to U there are elements u1, . . . , un ∈ U such that ξui ≡ ξfi(u1,...,un) for
any 0 ≤ i ≤ n.

Note that reproduced below standard (see, for example, [15]) proof of the
recursion theorem for enumeration {ξu}u∈U of deterministic partial recursive
functions is also valid for enumerations of nondeterministic partial recursive
functions.

Proof. Let {δn
x}x∈U be an enumeration of deterministic partial recursive

functions of arity n by elements of the universe U . Consider recursive func-
tions gi : Un 7→ U such that for any x1, . . . , xn ∈ U ,

ξgi(x1,...,xn)(y) =

{
ξδn

xi
(x1,...,xn)(y) if δn

xi
(x1, . . . , xn) convergent

divergent otherwise

Note that hi(x1, . . . , xn) = fi(g1(x1, . . . , xn), . . . , gn(x1, . . . , xn)) is a total
recursive function Un 7→ U for any i. Let wi be such that δn

wi
≡ hi. Thus,

ξgi(w1,...,wn) ≡ ξδn
wi

(w1,...,wn) ≡ ξhi(w1,...,wn) ≡ ξfi(g1(w1,...,wn),...,gn(w1,...,wn)).

Take ui to be gi(w1, . . . , wn).

Modal Tautologies

Definition 1. The formulas of the modal language L are built from propo-
sitional variables p, q, r . . . and false constant ⊥ using implication → and
binary modality B.

As usual, boolean connectives conjunction ∧, disjunction ∨, negation ¬,
and constant true > are assumed to be defined through implication and
false. Let ∧∧Γ be the conjunction of all formulas from a finite set Γ. By
definition, ∧∧∅ is >.

Definition 2. Let {ξu}u∈U be an arbitrary enumeration of (deterministic or
nondeterministic) recursive functions. Valuation ∗ is an arbitrary mapping
of propositional variables into subsets of the universe. We define mapping
(·)∗ that extends ∗ to a mapping from modal formulas into subsets of U :

1. ⊥∗ = ∅,

2. (φ→ ψ)∗ = {U (φ∗) ∪ ψ∗,
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3. (φB ψ)∗ = {w ∈ U | ∀u ∈ φ∗ (ξw(u) 6= ∅ → ξw(u) ∩ ψ∗ 6= ∅)}.

If φ∗ = U for any valuation ∗, then we say that propositional modal formula
φ is a tautology of enumeration {ξu}u∈U . Notation: {ξu}u∈U � φ.

In this paper we will provide complete axiomatizations of all tautologies
for an arbitrary enumeration of deterministic or nondeterministic functions.
They will be called modal logic of deterministic partial recursive functions
and modal logic of nondeterministic partial recursive functions.

Note that part three of the above definition stipulates that a nondeter-
ministic function belongs to (φBψ)∗ if for any argument from φ∗, on which
this function is defined, at least one of its values belongs to ψ∗. An alterna-
tive definition, when all such values are required to belong to ψ∗, is discussed
in the conclusion.

Axiomatizations

Definition 3. The modal logic < of nondeterministic partial recursive func-
tions is an extension of the classical propositional logic, formulated in the
language L, by the following axioms

A1. φB ψ → (χB ψ → (φ ∨ χ) B ψ),

A2. ⊥B φ,

A3. φB>,

and, in addition to Modus Ponens, the following monotonicity inference rule:

M.
φ1 → φ2, ψ1 → ψ2

φ2 B ψ1 → φ1 B ψ2

Definition 4. The modal logic <d of deterministic partial recursive func-
tions, in addition to the axioms and the inference rules of <, contains the
following additional axiom:

A4. φB ψ → (φB χ→ φB (ψ ∧ χ)).

A formula is a theorem in either of these logics if it can be proven from the
appropriate axioms using Modus Ponens and Monotonicity inference rules.
Let ∆ `L φ denotes that formula φ is provable from a set of formulas ∆ and
the theorems (not just axioms) of modal logic L using only Modus Ponens
inference rule. In particular, with ∆ being empty, `L φ expresses that φ is
a theorem of logic L.
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Lemma 1.
(a ∧ c) B b, (a ∧ ¬c) B b `< aB b

Proof. Assume (a ∧ c) B b and (a ∧ ¬c) B b. By axiom A1,

((a ∧ c) ∨ (a ∧ ¬c)) B b. (1)

On the other hand, since a→ (a ∧ c) ∨ (a ∧ ¬c) and b→ b are propositional
tautologies, by rule M,

`< ((a ∧ c) ∨ (a ∧ ¬c)) B b→ aB b.

This, in combination with formula (1), implies aB b.

Lemma 2.
aB ¬(b ∧ c), aB ¬(b ∧ ¬c) `<d

aB ¬b

Proof. Assume aB ¬(b ∧ c) and aB ¬(b ∧ ¬c). By axiom A4,

aB (¬(b ∧ c) ∧ ¬(b ∧ ¬c)) (2)

On the other hand, since a→ a and ¬(b∧c)∧¬(b∧¬c) → ¬b are propositional
tautologies, by rule M,

`<d
aB (¬(b ∧ c) ∧ ¬(b ∧ ¬c)) → aB ¬b.

This, in combination with formula (2), implies aB ¬b.

Theorem 2. For any propositional modal formula φ,

1. If `< φ, then {ξu}u∈U � φ for any enumeration {ξu}u∈U of nondeter-
ministic recursive functions,

2. If `<d
φ, then {ξu}u∈U � φ for any enumeration {ξu}u∈U of determin-

istic recursive functions.

Proof. Both parts of the theorem will be proven simultaneously by the
induction on the size of the derivation of formula φ. Cases of classical logic
axioms and Modus Ponens inference rule are trivial. Let us consider axioms
A1-A4 and the monotonicity rule M:

A1. Suppose that w ∈ (φ B ψ)∗ and w ∈ (χ B ψ)∗. We will show that
w ∈ ((φ ∨ χ) B ψ)∗. Indeed, assume that there is u ∈ (φ ∨ χ)∗ such
that ξw(u) 6= ∅. Note that (φ ∨ χ)∗ = φ∗ ∪ χ∗. Thus, u ∈ φ∗ or
u ∈ χ∗. In the first case, because w ∈ (φB ψ)∗, we can conclude that
ξw(u) ∩ ψ∗ 6= ∅. Therefore, w ∈ ((φ ∨ χ) B ψ)∗. The second case is
similar.
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A2. For any w ∈ U and any valuation ∗, statement

∀u ∈ ⊥∗ (ξw(u) 6= ∅ → ξw(u) ∩ ψ∗ 6= ∅)

is true because ⊥∗ = ∅.

A3. For any w ∈ U and any valuation ∗, statement

∀u ∈ φ∗ (ξw(u) 6= ∅ → ξw(u) ∩ >∗ 6= ∅)

is true because >∗ = U .

A4. Applicable only to the second part of the theorem. Suppose that w ∈
(φ B ψ)∗ and w ∈ (ψ B χ)∗. We will show that w ∈ (φ B (ψ ∧ χ))∗.
Indeed, assume that there is u ∈ φ∗ such that ξw(u) 6= ∅. Note that
w ∈ (φ B ψ)∗ and w ∈ (ψ B χ)∗ imply that ξw(u) ∩ ψ∗ 6= ∅ and
ξw(u) ∩ χ∗ 6= ∅. Since ξw(u) cannot contain more than one element,
ξw(u) ∩ (ψ∗ ∩ χ∗) 6= ∅. Therefore, w ∈ (φB (ψ ∧ χ))∗.

M. If φ∗1 ⊆ φ∗2 and ψ∗
1 ⊆ ψ∗

2, then any function from φ∗2 into ψ∗
1 is also a

function from φ∗1 into ψ∗
2.

Kripke Models

The intended semantics of logics < and <d is the semantics of partial re-
cursive functions given in Definition 2. The soundness of these logics with
respect to this semantics is established in Theorem 2. The rest of the paper
is dedicated to the completeness proof. As a first step, we introduce aux-
iliary Kripke-style semantics for both logics. Unlike the universe of partial
functions, Kripke semantics provides finite models for both logics. The com-
pleteness results for Kripke semantics, which are also presented below, are
obtained using standard modal logic techniques. In the next section, Kripke
models will be converted into valuations over the universe of partial func-
tions using Kleene recursion theorem. This will conclude the completeness
proof for semantics of partial recursive functions.

Definition 5. A Kripke model is a triple 〈W,→,
〉, where W is a finite
set of “worlds”, → is a ternary “computability” relation on worlds, and 

is a binary “forcing” relation between worlds and propositional formulas.
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Informally, worlds could be viewed as nondeterministic program codes
and u →w v as a statement that program w on input u might terminate
with output v.

Definition 6. A Kripke model is called deterministic if for any worlds
w1, w2, and u there could not be two different worlds v1 and v2 such that
u→w1 v1 and u→w2 v2.

Under the above informal interpretation, deterministic Kripke model is
such that for every input there is no more than one program that terminates
on this input.

Definition 7. For any Kripke model the forcing relation is extended to
relations 
 between worlds and modal formulas as follows:

1. w 1 ⊥,

2. w 
 φ→ ψ if and only if either w 1 φ or w 
 ψ,

3. w 
 φ B ψ iff for any worlds u and v such that u →w v and u 
 φ
there is world v′ such that u→w v′ and v′ 
 ψ.

Note that the last part of the above definition does not claim any forcing
relation at world v. Informally, w 
 φ B ψ iff for any φ-forcing input u if
nondeterministic program w can terminate on input u then it can terminate
with a ψ-forcing output. Of course, in the case of a deterministic Kripke
model, worlds v and v′ in the above definition will have to be the same.

Theorem 3. For any propositional modal formula φ0,

1. If 0< φ0, then there is a world w of a Kripke model 〈W,→,
〉 such
that w 1 φ0.

2. If 0<d
φ0, then there is a world w of a deterministic Kripke model

〈W,→,
〉 such that w 1 φ0.

Proof. Justifications of the two parts of this theorem are similar. We
will present them in one proof. Let symbol ` below stand for `< or `<d

,
depending on whether we prove the first or the second part of the theorem.

Definition 8. Let us define operation ∼ on modal propositional formulas
as follows: ∼ (¬φ) is φ for any propositional modal formula φ and ∼ φ is
¬φ if φ is not, syntactically, a negation of some formula.
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One can easily see that ∼ φ is equivalent to ¬φ in the classical proposi-
tional logic. Since logics < and <d are extensions of the classical logic, the
same equality holds there too.

Definition 9. Let Φ0 be a finite extension of {φ0} closed with respect to
subformulas and operation ∼.

Definition 10. For any subsets u, v, and w of Φ0, pair (u, v) is w-consistent
if w 0 ∧∧uB ¬∧∧v.

Lemma 3. If pair (u, v) is w-consistent, then sets u and v are consistent.

Proof. Assume that u is not consistent: ` ∧∧u→ ⊥. Thus, by rule M, we
have ` ⊥ B ¬∧∧v → ∧∧u B ¬∧∧v. Hence, by axiom A2, ` ∧∧u B ¬∧∧v. This
contradicts to w-consistency of pair (u, v).

Next, suppose that v is inconsistent: ` > → ¬∧∧v. Thus, by rule M, one
can conclude that ` ∧∧uB> → ∧∧uB ¬∧∧v. Taking into account axiom A3,
` ∧∧uB ¬∧∧v. Again contradiction with w-consistency of pair (u, v).

Lemma 4. For any w-consistent pair (u, v) of subsets of Φ0, subset u can
be extended to a complete consistent subset u′ of Φ0 such that pair (u′, v) is
still w-consistent.

Proof. We only need to prove that for any formula φ either φ or ∼ φ could
be added to u to keep pair (u, v) consistent. Assume that w ` (∧∧u∧φ)B¬∧∧v
and w ` (∧∧u∧ ∼ φ) B ¬∧∧v. By rule M, ` ((∧∧u ∧ ∼ φ) B ¬∧∧v) → ((∧∧u ∧
¬φ) B ¬∧∧v). Thus, w ` (∧∧u ∧ ¬φ) B ¬∧∧v. By Lemma 1, w ` ∧∧uB ¬∧∧v.
Therefore, (u, v) is not w-consistent. Contradiction.

Lemma 5. For any w-consistent in logic <d pair (u, v) of subsets of Φ0,
subset v can be extended to a complete and consistent in <d subset v′ of Φ0

such that pair (u, v′) is still w-consistent in logic <d.

Proof. Similarly to the proof of Lemma 4, assume that w `<d
∧∧uB¬(∧∧v∧

φ) and w `<d
∧∧u B ¬(∧∧v∧ ∼ φ). By rule M, `<d

(∧∧u B ¬(∧∧v ∧ ∼
φ)) → (∧∧uB ¬(∧∧v ∧ ¬φ)). Thus, w `<d

∧∧uB ¬(∧∧v ∧ ¬φ). By Lemma 2,
w `<d

∧∧uB ¬∧∧v. Therefore, (u, v) is not w-consistent.

Definition 11. Let Kripke model K = 〈W,→,
〉 be defined as follows: W
is the set of all pairs (w, φ) where w is a maximal consistent in < subset of
Φ0 and φ is a formula from Φ0, (u, ψ) →(w,φ) (v, χ) is true iff (u, {ψ}) is a
w-consistent in < pair and ψ ∈ v, and (w, φ) 
 p is true iff p ∈ w.
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Lemma 6. For any formula φ ∈ Φ0 and any world (w, σ) of model K,

φ ∈ w ⇐⇒ (w, σ) 
 φ.

Proof. Induction on the complexity of formula φ. The only non-trivial
case is when φ ≡ φ1 B φ2.

⇒ Suppose that φ1Bφ2 ∈ w. Consider any world (u, ψ) such that (u, ψ) 

φ1. Case 1: (u, ψ) is not w-consistent. Thus, by Definition 11, there is
no (v, χ) such that (u, ψ) →(w,σ) (v, χ). Therefore, (w, σ) 
 φ1 B φ2.
Case 2: (u, ψ) is w-consistent. By the induction hypothesis, φ1 ∈ u.
Thus, `< ∧∧u → φ1. We will show that set {φ2, ψ} is consistent.
Indeed, if φ2 `< ¬ψ, then, by rule M, we have `< φ1 Bφ2 → ∧∧uB¬ψ.
Hence, w `< ∧∧u B ¬ψ. This means that the pair (u, {ψ}) is not w-
consistent. Contradiction. Thus, {φ2, ψ} is a consistent set. Let v
be any maximal consistent extension of this set and χ be any formula
from Φ0. By the induction hypothesis, (v, χ) 
 φ2. By Definition 11,
(u, ψ) →(w,σ) (u, χ).

⇐ Suppose that φ1 B φ2 /∈ w. By the maximality of set w, we have
w 0< φ1Bφ2. By rule M, w 0< φ1B¬ ∼ φ2. Thus, pair ({φ1}, {∼ φ2})
is w-consistent. By Lemma 4, there is a complete consistent extension
u of {φ1} such that (u, {∼ φ2}) is w-consistent. By the induction
hypothesis, (u,∼ φ2) 
 φ1. By Lemma 3, set {∼ φ2} is consistent.
Consider an arbitrary complete and consistent extension v of this set
and an arbitrary formula χ of Φ0. Trivially, (u,∼ φ2) →(w,σ) (u, χ).
At the same time, for any (v′, χ′) such that (u,∼ φ2) →(w,σ) (v′, χ′)
we will have ∼ φ2 ∈ v′. Consistency of v′ implies that φ2 /∈ v′. Thus,
by the induction hypothesis, (v′, χ′) 1 φ2. Therefore, (w, σ) 1 φ.

Definition 12. Let deterministic Kripke model Kd = 〈W,→,
〉 be defined
as follows: W is the set of all pairs of maximal consistent in <d subset of
Φ0, (u1, u2) →(w1,w2) (v1, v2) is true iff (u1, v1) is a w1-consistent in <d pair
and u2 = v1 = v2, and (w1, w2) 
 p is true iff p ∈ w1.

Lemma 7. For any formula φ ∈ Φ0 and any world (w1, w2) of model Kd,

φ ∈ w1 ⇐⇒ (w1, w2) 
 φ.

Proof. Induction on complexity of formula φ. The only non-trivial case is
when φ is φ1 B φ2 for some modal formulas φ1 and φ2.
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⇒ Assume that φ1 B φ2 ∈ w1. Consider an arbitrary w1-consistent pair
(u, v) of maximal consistent subsets of Φ0. It will be sufficient to show
that if (u, v) 
 φ1, then (v, v) 
 φ2. Indeed, assume that (u, v) 
 φ1

and (v, v) 1 φ2. By the induction hypothesis, φ1 ∈ u and φ2 /∈ v. Thus,
by maximality of v, we have ∼ φ2 ∈ v. Hence formulas ∧∧u→ φ1 and
φ2 → ¬∧∧v are provable in the classical propositional logic. By rule M,
`<d

φ1 B φ2 → ∧∧uB¬∧∧v. Given that φ1 B φ2 ∈ w1, we can conclude
that w1 `<d

∧∧u B ¬∧∧v. Therefore, (u, v) is not a w1-consistent pair.
Contradiction.

⇐ Suppose φ1 B φ2 /∈ w1. By the maximality of w1, we have w1 0<d

φ1 Bφ2. By rule M, w1 0<d
φ1 B¬ ∼ φ2. Thus, ({φ1}, {∼ φ2}) is a w1-

consistent pair of sets. By Lemma 4 and Lemma 5, it can be extended
to a pair (u, v) of maximal consistent sets which is also w1-consistent.
By Definition 12, (u, v) →(w1,w2) (v, v). By the induction hypothesis,
(u, v) 
 φ1 and (v, v) 1 φ2. Therefore, (w1, w2) 1 φ1 B φ2.

Let us finish the proof of the completeness theorem. If 0< φ0, then
consistent subset {∼ φ0} of Φ0 could be extended to a maximal consistent
subset w of Φ0. By Lemma 6, (w, φ0) 1 φ0. Similarly, if 0<d

φ0, then {∼ φ0}
is consistent subset of Φ0. It can be extended to a maximal consistent subset
w of Φ. By Lemma 7, (w,w) 1 φ0.

Computational Completeness

Theorem 4. For any propositional modal formula φ0,

1. If w 1 φ0 for some world w of a Kripke model K, then {ξu}u∈U 2
φ0 for any enumeration {ξu}u∈U of nondeterministic partial recursive
functions.

2. If w 1 φ0 for some world w of a deterministic Kripke model K, then
{ξu}u∈U 2 φ0 for any enumeration {ξu}u∈U of deterministic partial
recursive functions.

Proof. The two parts of this theorem will be proven simultaneously. The
main idea is to define an embedding of the Kripke model into the universe of
partial recursive functions and a valuation of propositional formulas in such
a way that a propositional formula is forced in a world of the Kripke model
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if and only if the function, corresponding to the world of the model, belongs
to the valuation of the formula.

Suppose w1 1 φ0 for some world w1 of the Kripke model K. Let set
{w1, . . . , wn} be the set of all worlds of this Kripke model. Consider functions
fi(x1, . . . , xn) such that

ξfi(x1,...,xn)(u) = {xk | ∃j (u = xj ∧ wj →wi wk)}.

Note that if Kripke model K is deterministic, then wk, mentioned in the
above definition, is unique. Thus, partial recursive function ξfi(x1,...,xn) is
deterministic. No matter if the modelK is deterministic or nondeterministic,
let us consider fixed points u1, . . . , un of functions f1, . . . , fn whose existence
follows from Theorem 1. Also, let valuation ∗ be defined on propositional
variables as follows: p∗ = {ui | wi 
 p}.

Lemma 8. For any propositional modal formula φ and any 1 ≤ i ≤ n,

ui ∈ φ∗ ⇐⇒ wi 
 φ.

Proof. Induction on the complexity of formula φ. By the definition of ∗,
the lemma is true for propositional variables. We will consider the only
non-trivial inductive case: φ = φ1 B φ2.

⇒ Suppose wi 1 φ1 B φ2. Thus, by Definition 7, there are j and k such
that wj 
 φ1, wj →wi wk, and for any k′ such that wj →wi wk′ , we have
wk′ 1 φ2 . Thus, uk ∈ ξfi(u1,...,un)(uj) and, at the same time, wk′ 1 φ2

for any k′ such that uk′ ∈ ξfi(u1,...,un)(uj). Hence ξfi(u1,...,un)(uj) is not
empty and, by the induction hypothesis,

ξfi(u1,...,un)(uj) ∩ φ∗2 = ∅

By the choice of elements u1, . . . , un, they are fixed points of functions
f1, . . . , fn. Hence, ξui(uj) is not empty and ξui(uj) ∩ φ∗2 = ∅. At the
same time, by the induction hypothesis, uj ∈ φ∗1. Thus,

¬∀u ∈ φ∗1(ξui(u) 6= ∅ → ξui(u) ∩ φ∗2 6= ∅).

Therefore, by Definition 2, ui /∈ (φ1 B φ2)∗.

⇐ Assume that ui /∈ (φ1 B φ2)∗. Thus, by Definition 2, there is an
element y ∈ U such that y ∈ φ∗1, ξui(y) 6= ∅, and ξui(y) ∩ φ∗2 = ∅.
Note that since ξui ≡ ξfi(u1,...,un), we can conclude that ξfi(u1,...,un)(y)
is also non-empty. This, by the definition of fi can happen only if
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y = uj for some 0 ≤ j ≤ n. In this case, by the same definition,
ξui(uj) = ξfi(u1,...,un)(uj) = {uk | wj →wi wk}. Given that y ∈ φ∗1 and
ξui(y) ∩ φ∗2 = ∅, we can conclude, by the induction hypothesis, that
wj 
 φ1 and wk 1 φ2 for any k such that wj →wi wk. Therefore, by
Definition 7, wi 1 φ1 B φ2.

To finish the proof of Theorem 4, note that w1 1 φ0 implies, by Lemma 8,
that u1 /∈ φ∗0. Therefore, {ξu}u∈U 2 φ0.

Theorem 5. For any propositional modal formula φ and any enumeration
{ξu}u∈U of nondeterministic partial recursive functions, the following state-
ments are equivalent:

1. {ξu}u∈U � φ,

2. w 
 φ for every world w of any Kripke model,

3. `< φ.

Proof. Statement 1 implies statement 2 by Theorem 4. Statement 2 implies
statement 3 by Theorem 3. Statement 3 implies statement 1 by Theorem 2.

Corollary 1. Modal logic < is decidable.

Theorem 6. For any propositional modal formula φ and any enumeration
{ξu}u∈U of deterministic partial recursive functions, the following statements
are equivalent:

1. {ξu}u∈U � φ,

2. w 
 φ for every world w of any deterministic Kripke model,

3. `<d
φ.

Proof. The same as the proof of Theorem 5.

Corollary 2. Modal logic <d is decidable.
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Conclusions

In this paper we have introduced two modal logics of partial recursive func-
tions, gave their complete axiomatizations, and proved decidability of both
logics. These results, of course, depend on the exact interpretation of con-
nective B as given in Definition 2. Let us consider two natural alternatives
to this interpretation.

First of all, there are at least two different ways to define partial nonde-
terministic functions from set A to set B. One approach is to require that all
computational paths that start with an element in A either do not terminate
or terminate in B. The second approach is to say that if the terminating
paths exist, then at least one of them ends in B. The second approach is
normally used to define computation of a nondeterministic finite automaton
and it is the approach adopted in Definition 2 of this paper. It is also pos-
sible to consider the logic of nondeterministic partial computable functions
under the first approach. One can easily see that not only are all axioms
of logic < valid in this situation, but the axiom A4 of logic <d is valid too.
Simple review of the given above completeness proof for logic <d shows that
the same proof establishes completeness of <d as a logic of nondeterministic
partial functions under the first approach.

Secondly, one can define (φBψ)∗ to be the set of all total recursive func-
tions from φ∗ to ψ∗. This definition seems to be especially appropriate given
that under Curry-Howard isomorphism implication in the intuitionistic logic
corresponds to the type of total recursive functions. In the case of modal
logics of recursive functions, transition from partial to total functions is not
trivial. Indeed, if (φBψ)∗ is interpreted as the set of all total (deterministic
or nondeterministic) recursive functions from φ∗ into ψ∗, then let’s consider
unary modality ♦φ ≡ ¬(φ B ⊥). Note that a function from φ∗ to ∅ exists
only if φ∗ is empty. Thus, set (♦φ)∗ is equal to the entire universe U if set
φ∗ contains at least one element and set (♦φ)∗ is empty if φ∗ is empty. The
ability to define ♦ in the logics of total recursive functions makes it possible
to express many properties that can not be expressed in the logics of partial
functions. For example, formula ♦(φ B ψ) ∧ ♦(ψ B χ) → ♦(φ B ψ) states,
essentially, that the set of total functions is closed with respect to compo-
sition. A complete description of logics of total functions remains an open
question.
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