#### Second Exam

Write all answers in your blue book and show all work there. Return your exam and printout(s) in your blue book.

30 pts.

| Q | Р |
|---|---|
| 3 | 5 |
| 2 | 4 |
| 1 | 2 |

a) Find by hand (show work) the regression equation where Q is a function of P.

b) Find the  $r^2$  and the standard error of the estimate.

c) What percentage of the total variation is explained by the model.

d) Find the adjusted  $r^2$  and interpret it.

e) Find the predicted value of Q and a 95 percent prediction interval for  $\mu_{Q,P}$  when P is 1.

20 pts.

2) Use the printout for the price/income regression on the next page for this question.

a) Is there a statistically significant relationship ( $\alpha$ =.01) between price and income? Use two parts of the display to support your answer.

b) Are there outliers or influential observations. Explain.

c) Does heteroscedasticity seem to be a problem in the data? Explain.

#### 25 pts. Computer Problem

3) a) Use SPSS and the Mutual Funds data in the Chapter 16 folder to regress Expense Ratio, Safety Rating and Fund Type on Performance. (You will have to create a dummy variable to use the fund information. Ask for help if you need it.) Ask for collinearity diagnostics.

b) How much does your model suggest that fund type affects performance?

c) Is there any evidence of collinearity? Explain.

d) Run the model now without control for fund type. Are the effects of the remaining variables changed much by the absence of the dummy variable? Explain.

25 pts

4) Use the printout for LNGNP.

a) If the model is  $\ln GNP = a + bX$ , what are the values for A and B in  $GNP = AB^X$ ?

b) Is there any indication of autocorrelation in the printout? Explain.

c) Does the residual plot look like it should? Explain.

d) Explain the difference between a standardized residual and one that's unstandardized? (Plain English please, don't just write formulas.)

I have neither given nor received unfair aid on this test nor am I aware of anyone else who has.\_\_\_\_\_

| SUMMAR             | Y OU'    | TPUT   |         |          |       |                 |          | Inc  | ome               |           |           | ]    |
|--------------------|----------|--------|---------|----------|-------|-----------------|----------|------|-------------------|-----------|-----------|------|
|                    |          |        |         |          |       |                 | (\$1000  | s) F | Residual P        | ot        |           |      |
| egression St       | tatistic | S      |         |          |       |                 |          |      |                   |           |           |      |
| Multiple R         | 0.93     |        |         |          | s     | 20              |          |      |                   | •         |           |      |
| R Square           | 0.86     |        |         |          | dual  | 10 -            |          |      | •                 |           | •         |      |
| Adjusted F         | 0.85     |        |         |          | esic  | -10 0           | 10       | 20   | 30                | 40 50     | 0 60      |      |
| Standard E         | 6.63     |        |         |          | 2     | -20             | 10       | 20   |                   |           | , oo      |      |
| Observatio         | 12       |        |         |          |       |                 |          |      | Income            |           |           |      |
| ANOVA              |          |        |         |          |       |                 |          |      | (\$1000s)         |           |           |      |
|                    | df       | SS     | MS      | F        | gr    | <i>ificance</i> | F        |      |                   |           |           |      |
| Regression         | 1        | 2718   | 2718    | 61.7503  | 31 1  | 1.38E-05        |          |      |                   |           |           |      |
| Residual           | 10       | 440    | 44      |          |       |                 |          |      |                   |           |           |      |
| Total              | 11       | 3158   |         |          |       |                 |          |      |                   |           |           |      |
|                    |          |        |         |          |       |                 |          |      |                   |           |           |      |
| Coe                | efficie  | lard E | t Stat  | P-value  | e Lo  | wer 95%         | Upper 9. | 5%   |                   |           |           |      |
| Intercept          | -12      | 12.8   | -0.9    | 0.37979  | 93 -  | -40.4204        | 16.816   | 31   |                   |           |           |      |
| Income             |          |        |         |          | -     | - · ·           |          | -    |                   |           |           |      |
| (\$1000s)          | 2.18     | 0.28   | 7.86    | 1.38E-(  | )5 1  | .564916         | 2.8035   | 85   |                   |           |           |      |
|                    | 2110     | 0.20   | 1.00    | 1.002    |       |                 | 210000   |      |                   |           |           |      |
|                    |          |        |         |          |       | 1               | Incom    | е    |                   | Price     |           |      |
|                    |          |        |         |          |       |                 | (\$1000  | s)   |                   | (\$1000s) |           |      |
| RESIDUA            | L OUI    | TPUT   |         |          |       |                 | Mean     |      | 45.69167          | Mean      |           | 88   |
|                    | Pred     |        | _       |          |       |                 |          |      |                   |           |           |      |
|                    | icted    |        |         |          |       |                 |          |      |                   |           |           |      |
|                    | Pric     |        |         |          |       |                 |          |      |                   |           |           |      |
|                    | е        |        |         |          |       |                 |          |      |                   |           |           |      |
|                    | (\$10    |        |         |          |       |                 |          |      |                   |           |           |      |
| <b>Observation</b> | 00s) :   | esidua | ls Stan | dard Res | sidua | ls              |          |      |                   |           |           |      |
| 1                  | 79.5     | -3.5   | -0.6    |          |       |                 |          |      |                   |           |           |      |
| 2                  | 92.4     | -1.4   | -0.2    |          |       |                 |          |      | Income            | <b>`</b>  |           |      |
| 3                  | 75.6     | -11    | -1.7    |          |       |                 | /\$      | 100  | ncond<br>Ne) Line | Fit Plot  |           |      |
| 4                  | 85       | 3.04   | 0.48    |          |       |                 | (Ψ       | 100  |                   |           |           |      |
| 5                  | 69.7     | 0.33   | 0.05    |          |       |                 |          |      |                   |           |           |      |
| 6                  | 66.6     | 6.39   | 1.01    | 140      |       |                 |          |      |                   |           |           |      |
| 7                  | 74       | 11     | 1.73    | 120      |       |                 |          |      |                   |           |           |      |
| 8                  | 112      | 5.52   | 0.87    | 120      |       |                 |          |      |                   |           |           |      |
| 9                  | 90.2     | -9.2   | -1 5    | 100      | -     |                 |          |      |                   |           |           |      |
| 10                 | 93.7     | -47    | -0.7    |          |       |                 |          |      |                   | 4         | • P       | rice |
| 10                 | 107      | 2 54   | 0.7     | 80       | -     |                 |          |      | <b></b>           | •         | (9        | 610C |
| 11                 | 107      | 0.58   | 0.0     |          |       |                 |          |      |                   |           |           | redi |
| 12                 | 107      | 0.50   | 0.07    | 60       |       |                 |          |      |                   |           | (9        | 5100 |
|                    |          |        |         | 40       |       |                 |          |      |                   |           |           |      |
|                    |          |        |         | 40       |       |                 |          |      |                   |           |           |      |
|                    |          |        |         | 20       | _     |                 |          |      |                   |           |           |      |
|                    |          |        |         |          |       |                 |          |      |                   |           |           |      |
|                    |          |        |         | 0        | -     |                 |          |      |                   |           | 4         |      |
|                    |          |        |         |          | 0     |                 | 20       |      | 40                | 6         | <b>50</b> |      |
|                    |          |        |         |          |       |                 |          |      |                   |           |           |      |

# Regression

#### Model Summary<sup>b</sup>

| Model | R                 | R Square | Adjusted<br>R Square | Std. Error of the Estimate | Durbin-W<br>atson |
|-------|-------------------|----------|----------------------|----------------------------|-------------------|
| 1     | .999 <sup>a</sup> | .998     | .998                 | .00401                     | .101              |

a. Predictors: (Constant), 1929 to 1983

b. Dependent Variable: LNGNP

### **Coefficients**<sup>a</sup>

|       |              | Unstandardized<br>Coefficients |            | Standardized<br>Coefficients |         |      |
|-------|--------------|--------------------------------|------------|------------------------------|---------|------|
| Model |              | В                              | Std. Error | Beta                         | t       | Sig. |
| 1     | (Constant)   | 3.267                          | .009       |                              | 358.430 | .000 |
|       | 1929 to 1983 | .014                           | .000       | .999                         | 110.734 | .000 |

a. Dependent Variable: LNGNP

### **Residuals Statistics**<sup>a</sup>

|                      | Minimum | Maximum | Mean   | Std. Deviation | Ν  |
|----------------------|---------|---------|--------|----------------|----|
| Predicted Value      | 4.1188  | 4.4260  | 4.2724 | .09468         | 23 |
| Residual             | 0080    | .0043   | .0000  | .00392         | 23 |
| Std. Predicted Value | -1.622  | 1.622   | .000   | 1.000          | 23 |
| Std. Residual        | -1.983  | 1.066   | .000   | .977           | 23 |

a. Dependent Variable: LNGNP

## Charts

# Scatterplot

