Second Exam

Write all answers in your blue book and show all work there. Return your exam in your blue book.

28 pts.
1) If \(\text{Prob}(A|B) = .5 \) and \(P(A \cap B) = .3 \) and \(\text{Prob}(A) = .9 \),
 a) What does \(P(B) =? \)
 b) What does \(P(B|A) =? \)
 c) Are \(A \) and \(B \) independent? Why?

18 pts.
2) Danger! There are fast ways and slow ways to solve here. Do the rest of the test and come back if your approach is taking a long time.
 a) Find the probability that 4 or more overweight individuals will be selected in a sample of 15, if \(p \), the probability of selection on each trial is .1.
 b) Find the probability that 4 or more overweight individuals will be selected in a sample of 15, if \(p \), the probability of selection on each trial is .45.

36 pts.
3) a) If \(X \) is distributed normally with \(\mu = 20 \) and \(\sigma = 2 \), find \(\text{Prob}(19.25 < X < 20.25) \) on a random draw.
 b) If \(X \) is not distributed normally, but \(n = 49 \) and \(\sigma \) is assumed to be 14, find the probability that \(\bar{X} \) will be within 2 units of \(\mu \).
 c) If \(X \) is not distributed normally and \(n = 4 \) and \(\sigma \) is assumed to be 14, what is the minimum percentage of the sampling distribution for \(\bar{X} \) that will be within 14 units of \(\mu \).
 d) Why can’t the central limit theorem be used in part c (to establish a normal distribution for \(\bar{X} \))?

18 pts.
4) a) Construct a 90 percent confidence interval for \(\mu \) using the following information: \(n = 64 \), \(\bar{X} = 20 \) and \(s = 4 \).
 b) Construct a 95 percent confidence interval for \(\mu \) using the following information: \(n = 16 \), \(\bar{X} = 20 \) and \(s = 4 \).

I have neither given nor received unfair aid on this test nor am I aware of anyone else who has.